PROFILO AZIENDALE PRODUZIONE E SERVIZI

LA TERMOTECNICA è una società Italiana, fondata nel 1974 è una tra le prime aziende italiane a produrre e progettare con tecnologia propria, sonde a termocoppia e termoresistenza. Nel corso degli anni, i prodotti LA TERMOTECNICA si sono imposti sul mercato nazionale ed internazionale grazie alla loro qualità ed affidabilità, infatti fino dalla sua fondazione, abbiamo sempre puntato sulla qualità del prodotto e sulla efficienza dei servizi. Servizi che si concretizzano in un supporto tecnico e di assistenza

in grado di seguire qualsiasi problematica applicativa, in tempi di consegna rapidi e certi, nell'attività di ricerca, nell'emissione di documenti di certificazione di qualità, insomma in quella serie di attività che solo un'azienda che punta a posizioni di leadership può sostenere. Questo ovviamente a tutto vantaggio del cliente, che può contare su un partner pronto ed efficiente, sempre, in ogni occasione.

PRODUZIONE E SERVIZI

PRODUZIONE

Nello stabilimento di Bruino (TO) sono prodotti sensori di temperatura a termoresistenza ed a termocoppia. Le termocoppie vengono prodotte nella versione classica, fili calibrati e isolatori, o con isolamento in MgO (ossido minerale), sia a metallo base che a metallo nobile. Assemblate secondo le norme DIN, ASTM, CTI-UNI. Le termoresistenze nelle serie da 50-100-1000 Ohm a 0° C, assemblate all'interno di guaine protettive seconda l'esigenze di utilizzo, ed isolate con isolatori ceramici o con isolamento in MgO (ossido minerale). Assemblate secondo le norme DIN, UNI.

In entrambi i casi esistono linee di prodotti a seconda dell'utilizzo (serie standard, serie TSM, serie MgO, per rilievi aerotermici, serie tutto cavo, ecc..). La flessibilità che ci contraddistingue, ci consente comunque di realizzare prodotti "custom", che si adattino alle specifiche esigenze di utilizzo o di precisione richieste dal cliente. Tutta la produzione si avvale di un sistema di controllo di processo che ci consente di applicare il collaudo FULL TESTED, che consiste nella garanzia che ogni singolo sensore è collaudato funzionalmente, prima di essere dichiarato idoneo.

DISTRIBUZIONE COMMERCIO E SERVIZI

Affiancano l'attività di produzione, una serie di servizi, comprendenti la commercializzazione di strumenti, accessoristica, quali cavi di estensione per termocoppie e termoresistenze, connettori compensati, teste di connessione trasmettitori linearizzati di temperatura e pressione, strumenti di misura ad infrarosso. Inoltre grazie al nostro laboratorio di taratura siamo in grado di emettere certificati di taratura nel range -30 ..+1064 °C, con rintracciabilità ACCREDIA.

PROFILO AZIENDALE PRODUZIONE E SERVIZI

SONDE TERMICHE NORMALIZZATE O STANDARD

Sonde termiche a termocoppia ed a termoresistenza o accessori che si possono ordinare seguendo la guida del ns. catalogo sonde termiche.

- Termocoppie serie standard
- Termosonde TSM
- Termocoppie serie MgO, isolate in ossido di magnesio
- Termoresistenze serie MgO, isolate in ossido di magnesio
- Termocoppie con isolamento MgO e testa di connessione
- Termoresistenze con isolamento MgO e testa di connessione
- Termocoppie tutto cavo
- Termoresistenze tutto cavo
- Termosonde per rilievi aerotermici
- Termocoppie con attacco a baionetta
- Termoresistenze con attacco a baionetta
- Raccordi a compressione per fissaggio su impianto
- Pozzetti termometrici
- Microtermocoppie
- Cavi e prolunghe
- Termocoppie per misure di contatto.

ecc.

costruzione secondo normative DIN, ANSI, CTI-UNI.

DISTRIBUZIONE COMMERCIO E SERVIZI

Termocoppie e termoresistenze per impieghi specifici, nei settori

- Automotive
- Avionico
- Navale
- Chimico
- Alimentare
- Petrolchimico
- · Laterizi gress klinker

La maggior parte di questi prodotti sono appositamente progettati in relazione alle caratteristiche di impiego formulate dai clienti, e vengono realizzate secondo standard di collaudo che prevedono la procedura FULL TESTED

PRODUZIONE E SERVIZ

LE NOSTRE PROPOSTE

1. SETTORE TEMPERATURA

- 1.1 CAVI DI ESTENSIONE E COMPENSATI PER TERMORESISTENZE E TERMOCOPPIE CONNETTORI COMPENSATI MULTIPOLO, VOLANTI E DA PANNELLO. SWITCH MULTICANALI COMPENSATI PER TERMOCOPPIA E TERMORESISTENZA.
- 1.2 TERMOREGOLATORI E MISURATORI, SISTEMI DI CONTROLLO E REGOLAZIONE. SOFTWARE DI CONTROLLO E GESTIONE DI IMPIANTO.
- 1.3 TERMOMETRI PORTATILI O DA BANCO PER TERMOCOPPIE E TERMORESISTENZE PONTI DI MISURA.
- 1.4 SISTEMI DI CALIBRAZIONE, PORTATILI E FISSI, STRUMENTI E FONTI DI CALORE TERMOSTATATI AD ELEVATA STABILITA'. SISTEMI DI TARATURA CHIAVI IN MANO.
- 1.5 TRASDUTTORI, CONDIZIONATORI DI SEGNALE CON USCITE IN LOOP DI CORRENTE O IN TENSIONE, PER MONTAGGIO ENTROQUADRO O IN TESTA DI CONNESSIONE

- 1.6 CALIBRATORI MULTIFUNZIONE PER TERMOCOPPIA E TERMORESISTENZA PORTATILI E DA BANCO
- 1.7 REGISTRATORI, A PUNTI E A TRACCIA, DATALOGGERS, PLOTTERS, REGISTRATORI A DISCO. SISTEMI "TEMPERATURE PROFILER WIRE LESS".
- 1.8 SISTEMI DI MISURA DELLA TEMPERATURA ALL'INFRAROSSO, PORTATILI E FISSI, PER TEMPERATURE FINO A 3000° C, SISTEMI DI FOTOGRAFIA ALL'INFRAROSSO MISURATORI E SENSORI.
- 1.9 SISTEMI DI ACQUISIZIONE DATI ANALOGICO DIGITALI, COLLEGABILI A PC. PER TEMPERATURE, CORRENTI, TENSIONI, FREQUENZE. SOFTWARE DI GESTIONE ED ELABORAZIONE DATI. SCHEDE PER BUS ISA PC, XT, AT, PCMCIA DI ACQUISIZIONE DATI ANALOG-DIG/DIG-ANALOG/DIG-DIG. SOFTWARE DI GESTIONE ED ACQUISIZIONE DATI. SISTEMI CHIAVI IN MANO

PRODUZIONE E SERVIZI

2. STRUMENTAZIONE ELETTRONICA IN GENERALE

2.1 MULTIMETRI PORTATILI E DA BANCO. SCANNERS, SOFTWARE DI GESTIONE ED ELABORAZIONE. MISURATORI DI IMPULSI, FREQUENZIMETRI, CONTAGIRI. ALIMENTATORI. OSCILLOSCOPI.

3. FORZA E PRESSIONE

3.1 TRASDUTTORI DI PRESSIONE, ASSOLUTA, RELATIVA, VUOTO CON USCITA IN LOOP DI CORRENTE O IN TENSIONE. MISURATORI E LETTORI PORTATILI E DEL PANNELLO, CALIBRATORI. STRAIN GAGES, CELLE DI CARICO.

4. RISCALDATORI A RESISTENZA

4.1 RESISTENZE ELETTRICHE PER FORNI DI TUTTI I TIPI. INDUSTRIALI PER TRATTAMENTO TERMICO, RICOTTURA CEMENTAZIONE, NITRURAZIONE. IN LEGHE DI KANTALL, NICROTALL, AL CARBURO DI SILICIO. RESISTENZA CORAZZATE, A CARTUCCIA PER IMPIANTI DI STAMPAGGIO DELLA PLASTICA.

INDICE GENERALE

TERMOCOPPIE SERIE STANDARD	1	
Con guaina in acciaio	2	
Con guaina in ceramica	3	
Guaine di ricambio in acciaio Guaine di ricambio in ceramica	5	
Inserti di ricambio	6 7	
inserti di ricambio	ľ	
TERMOCOPPIE SERIE TSM	8	
Con guaina in acciaio	9	
Con guaina in acciaio e inserto a molleggio	10	
Con guaina in acciaio e trasmettitore 4/20mA	11	
Inserti a molleggio con basetta ceramica	12	
Inserti a molleggio con trasduttore 4/20mA	13	
TERMOCOPPIE SERIE OSSIDO MINERALE (MgO)	14	
Con connettore compensato standard	15	
Con connettore compensato standard e raccordo fisso	16	
Con connettore compensato standard e raccordo scorrevole	17	
Con connettore compensato doppio standard	18	
Con connettore compensato doppio standard e raccordo fisso	19	
Con connettore compensato doppio standard e raccordo scorrevole	20	
Con connettore compensato mignon	21	
Con connettore compensato mignon e raccordo fisso	22 23	
Con connettore compensato mignon e raccordo scorrevole Con connettore compensato doppio mignon	23 24	
Con connettore compensato doppio mignon e raccordo fisso	25	
Con connettore compensato doppio mignon e raccordo scorrevole	26	
· · · · · · · · · · · · · · · · · · ·		
TERMOCOPPIE SERIE OSSIDO MINERALE (MgO) CON CAVO DI ESTENSIONE		
Lisce	27	
Con raccordo fisso	28	
Con raccordo scorrevole	29	
Con connettore compensato Con connettore compensato e raccordo fisso	30 31	
Con connettore compensato e raccorso scorrevole	32	
	02	
TERMORESISTENZE SERIE OSSIDO MINERALE (MgO) CON CAVO DI ESTENSIONE		
Lisce	33	
Con raccordo fisso	34	
Con raccordo scorrevole	35	
TERMORESISTENZE SERIE OSSIDO MINERALE (MgO) E CONNETTORE LEMO		
 Lisce	36	
Con raccordo fisso	37	

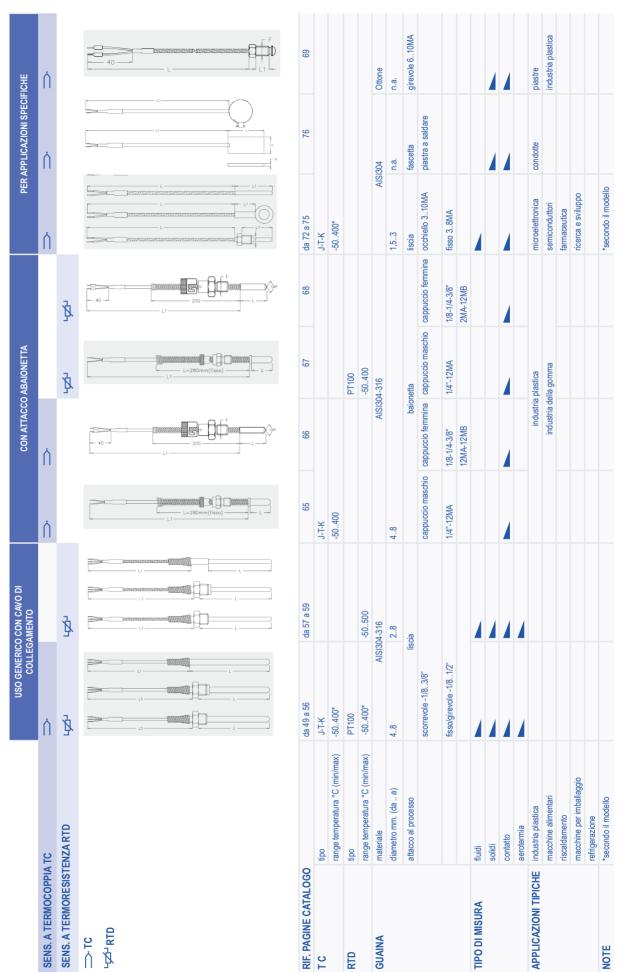
Con raccordo scorrevole

38

INDICE GENERALE

A TERMOTECNICA

TERMORESISTENZE SERIE OSSIDO MINERALE (MgO) E CONNETTORE AMPHENOL	39
PROLUNGHE PER TERMORESISTENZE CON CONNETTORE LEMO	40
PROLUNGHE PER TERMORESISTENZE CON CONNETTORE AMPHENOL	41
TERMOCOPPIE SERIE OSSIDO MINERALE (MgO) CON TESTINA DI CONNESSIONE	
Lisce	42
Con raccordo fisso	43
Con raccordo scorrevole	44
TERMORESISTENZE SERIE OSSIDO MINERALE (MgO) CON TESTINA DI CONNESSIONE	
Lisce	45
Con raccordo fisso	46
Con raccordo scorrevole	47
TERMOCOPPIE SERIE TUTTO CAVO	48
Con cavo in elettrovetro	49
Con cavo in teflon	50
Con cavo gomma silicone	51
Con cavo in pvc	52
TERMORESISTENZE SERIE TUTTO CAVO	
Con cavo in elettrovetro	53
Con cavo in teflon Con cavo in pvc	54 55
Con cavo in gomma silicone	56
TERMORESISTENZE CON INSERTO PER ALTE TEMPERATURE (500 °C)	
Con cavo in pvc	57
Con cavo in gomma silicone Con cavo in vetro silicone	58 50
Con cavo in vetro sincone	59
TERMOSONDE PER RILIEVI AEROTERMICI	
Con cavo in pvc	60
Con cavo in gomma silicone	61
Con vetro silicone Per montaggio a parete	62 63
Con testina e raccordo scorrevole	64
TERMOCOPPIE SERIE TUTTO CAVO CON ATTACCO A BAIONETTA	
Standard	65
Con puntale a 120°	66


INDICE GENERALE

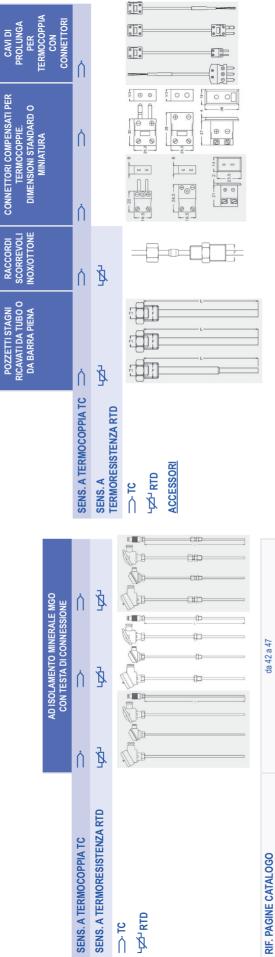
TERMORESISTENZE SERIE TUTTO CAVO CON ATTACCO A BAIONETTA	
Standard Con puntale a 120°	67 68
TERMOCOPPIE SERIE TUTTO CAVO CON VITE GIREVOLE	69
POZZETTI TERMOMETRICI	14
Con guaina di protezione in acciaio Con guaina di protezione in ceramica	70 71
MICROTERMOCOPPIE	
Con cavo in gomma silicone Con cavo in pvc Con cavo in elettrovetro Con cavo in teflon	72 73 74 75
TERMOCOPPIE PER MISURE DI CONTATTO	76
ACCESSORI	77
Pozzetti ricavati da tubo o da barra Raccordi a compressione Prolunghe intestate con connettori Connettori compensati Cavi di compensazione Cavi con isolamento in Teflon Cavi con isolamento in elettrovetro Cavi con isolamento in gomma siliconica Cavi con isolamento in PVC Cavi di compensazione Convertitori/trasmettitori di temperatura Tarature e certificazioni	78 79 80 81 83 84 86 87 88 89 90
NOTE TECNICHE	
Termocoppie Termoresistenze Generali	111 117 121

Codifica internazionale dei codici/colore per termocoppie T-J-E-K-N-S/R-B Tabella temperatura vs. F.E.M, termocoppia tipo K secondo IEC 584-1 . ITS90 Tabella temperatura vs. F.E.M, termocoppia tipo J secondo IEC 584-1 . ITS90 Tabella temperatura vs. F.E.M, termocoppia tipo T secondo IEC 584-1 . ITS90 Tabella temperatura vs. F.E.M, termocoppia tipo N secondo IEC 584-1 . ITS90 Tabella temperatura vs. F.E.M, termocoppia tipo S secondo IEC 584-1 . ITS90 Tabella temperatura vs. F.E.M, termocoppia tipo E secondo IEC 584-1 . ITS90 Tabella temperatura vs. resistenza termoresistenza Pt100 secondo IEC 751 . ITS90

A TERMOTECNICA

GUIDA RAPIDA

		PER AEROTERMI	PER AEROTERMIA E TERMOTECNICA	osn	O GENERICO CON T	USO GENERICO CON TESTA DI CONNESSIONE	ONE	CON TESTADI CO	CON TESTA DI CONNESSIONE ED INSERTO MOLLEGGIATO ESTRAIBILE	RTO MOLLEGGIATO
SENS. A TERMOCOPPIA TC	72	Ņ			Ň	Ň	Ň	Ň	Ň	À
SENS. A TERMORESISTENZA RTD	ENZARTD	Ż.	Ę	Ą	Į.	Ą	Ţ	Ţ	Ţ	Ą
>T. ✓ Y. ✓ N. J.										
RIF. PAGINE CATALOGO		da 60 a 62	63	64	6	6	o	10	10	10
TC	tipo	J-T-K				J-T-E-K			J-T-E-K	
	range temperatura °C (min/max)	-50400				-50450			-50450	
RTD	tipo		PT100			PT100			PT100	
	range temperatura °C (min/max)	-50400*	-50120	-50250		-50450			-50450	
GUAINA	materiale	AISI304-316	Alliminio-Nylon			AISI304-316			AISI304-316	
	diametro mm. (da a)	68	20	12		414			414	
	attacco al processo	liscia	a parete	scorrevole-1/41/2"	liscia	fisso-1/81/2"	scorrevole-1/81/2"	liscia	scorrevole-1/81/2"	scorrevole-1/81/2"
		fisso/airavole 1/83/8"								
TIPO DI MISURA	fluidi				1	4		4	1	1
	solidi									
	contatto									
	aerotermia	1	1	1						
APPLICAZIONI TIPICHE			riscaldamento			tubazioni e condotte			tubazioni e condotte	
			refrigerazione		me	macchine industriali in genere	nere		macchine industriali in genere	nere
			trattamento aria/gas						macchine soggette vibrazioni	ioni
NOTE		*secondo il modello		per condotte	a	anche con doppio elemento	nto		anche con doppio elemento	nto
					anche in	anche in esecuzione antideflagrante EEXII	ante EEXII	anche	anche in esecuzione antideflagrante EEXII	ante EEXII


A TERMOTECNICA

		CON TESTA DI CONNE TRASMETTITORE DI EM 420MA	CON TESTA DI CONNESSIONE E RASMETTITORE DI EMPERATURA 420MA	STANDARD	CON TESTA DI COL TEMPE	STANDARD CON TESTA DI COLLEGAMENTO E GUAINA PER ALTE TEMPERATURE	NA PER ALTE	STANDARD CC CERAMIC	STANDARD CON TESTA DI COLLEGAMENTO E GUAINA CERAMICA PER ALTISSIME TEMPERATURE	MENTO E GUAINA PERATURE
SENS. A TERMOCOPPIA TC	TC		Ņ		Ň	À	Ņ		À	À
SENS. A TERMORESISTENZA RTD	ENZARTD	Ą	Ž.	卓						
DT-C ER Ag										
RIF. PAGINE CATALOGO		E	£	Ħ	2	2	2	4	4	4
1C	tipo		J-T-E-K			E-K-N-R-S			K-N-R-S	
	range temperatura °C (min/max)		-50450			01200			01600	
RTD	tipo		PT100							
	range temperatura °C (min/max)		-50450							
GUAINA	materiale		AISI304-316			AISI310-AISI446-INC600	00		Ceramica DIN530-610-710	0
					ш.	Protezioni interne in ceramica	mica		Protezioni interne in ceramica	ica
	diametro mm. (da a)		414			1420-3/8"3/4"			1520	
	attacco al processo	liscia	fisso-1/81/2"	scorrevole-1/81/2"	liscia	fisso-3/82"	flangia	liscia	fisso-3/82"	flangia
				1/4"-12MA		maschio/femmina	scorrevole o fissa		maschio/femmina	scorrevole o fissa
TIPO DI MISURA	fluidi	1	1	1				1	1	1
	solidi									
	contatto									
	aerotermia	1	1	1	1	1	1	1	1	1
APPLICAZIONI TIPICHE			tubazioni e condotte			forni di trattamento termico	ioo		forni di trattamento termico	Ω
		ш	macchine industriali in genere	nere		bruciatori			generatori di endogas	
						caldaie		pui	industria del vetro e della ceramica	amica
						industria della ceramica	g		forni fusori	
						fornaci			forni a sali_ usi	
NOTE		Us	Uscita in loop di comente 420mA	.20mA		anche con doppio elemento	into		anche con doppio elemento	to
			anche a sicurezza intrinseca	eca	anche ii	anche in esecuzione antideflagrante EEXII	ante EEXII	anche	anche in esecuzione antideflagrante EEXII	nte EEXII
		anchei	anche in esecuzione antideflagrante EEXII	ante EEXII						

		AD ISOLAMENTO M	INERALE MGO CON CON INTEGRATO	AD ISOLAMENTO MINERALE MGO CON CONNETTORE COMPENSATO INTEGRATO	AD ISOLAMENTO MINERALE MGO CON CAVO DI COLLEGAMENTO INTEGRATO	NERALE MGO CON IENTO INTEGRATO	AD ISOLAMENTO MINERALE CON CAVO E CONNETTORE	AD ISOLAMENTO MINERALE CON CONNETTORE	AD ISOLAMENTO CONNESSIONE E CERAMICA PERA	AD ISOLAMENTO MINERALE,TESTA DI CONNESSIONE E GUAINE IN METALLO/ CERAMICA PER ALTE/ALTISSIME TEMP.
SENS. A TERMOCOPPIA TC	COPPIATC	Ň	À	Ņ	À		ń		ń	ń
SENS. A TERMO	SENS. A TERMORESISTENZA RTD					Ţ		身		
J. T. J.										
RIF. PAGINE CATALOGO	TALOGO	da 15 a 17	da 21 a 23	da 18 a 20 e da 24 a 26	da 27 a 29	da 33 a 35	da 30 a 32	da 36 a 39	2	4
TC	tipo		J-E-K-N-S		T-J-E-K-N-S		T-J-E-K-N-S		E-K-N-R-S	K-N-R-S
	range temperatura °C (min/max)	-501000*	-501000*	-501000*	-501000*		-501000*		01200*	01600*
RTD	tipo					PT100		PT100		
	range temperatura °C (min/max)					-80500		-80500		
GUAINA	materiale		AISI304-316_INC600		AISI304-316-INC600	AISI304-316	AISI304-316-INC600	AISI304-316	AISI310-446-INC600	IN530-610-710
	diametro mm. (da a)	26	0,5.3	36	16	36	16	16	1420-3/8"3/4"	1520
	attacco al processo	liscia	liscia	liscia	liscia	liscia	liscia	liscia	liscia	liscia
		fisso-810MA	fisso-810MA	fisso-810MA	fisso-810MA	fisso-810MA	fisso-810MA	fisso-810MA	fisso-810MA	flangiata
		fisso-1/81/2"	fisso-1/81/2"	fisso-1/81/2"	fisso-1/81/2"	fisso-1/81/2"	fisso-1/81/2"	fisso-1/81/2"	fisso-1/81/2"	fisso-3/82"
A COLOUR	द	scorrevole-1/6 1/2	scorrevole-1/61/2	scorrevoie-1/61/2	scorrevole-1/61/2	scorrevoie-1/61/2	scorrevole-1/61/2	scorrevole-1/61/2	scorrevole-1/61/2	mascnio/remmina
			4							1
	contatto	1	1	4	1	1	1	1		
	aerotermia	1	1	1	4		1			1
APPLICAZIONI			gas acqua oli		gas acqua oli	lua oli	gas acqua oli	gas acqua oli	trattamenti termici	trattamenti termici
TIPICHE			macchine industriali in genere	nere	macchine industriali in genere	triali in genere	macchine industriali in genere	macchine industriali in genere	bruciatori	generatori endogas
			ricerca e sviluppo		ricerca e sviluppo	oddnjivs	ricerca e sviluppo	ricerca e sviluppo	caldaie	vetro ceramica
			microelettronica					sotto vuoto	industria ceramica	forni fusori
									fornaci	forni a sali
NOTE		*secondo il modello	*secondo il modello	*secondo il modello	*secondo il modello		*secondo il modello		*second	*secondo il modello
				doppio elemento					anche con o	anche con doppio elemento
									anche in esecuzion	anche in esecuzione antideflagrante EEXII

A TERMOTECNICA

CONNETTORI COMPENSATI PER

RIF. PAGINE CATALOGO	CATALOGO	78	62	da 81 a 82	
1 C		T-J-E-K-N-R-S	တု	T-J-E-K-N-R-S	S
RTD		PT100			
	materiale	ottone	ottone	n.a.	
		AISI304-310-316	AISI304		
		INC600			
	diametri mm.	620	16*	n.a.	
	attacco al processo	1/4"1/2"	1/4"1/2"	n.a.	
			8MA		
			a saldare		
	codice colori	n.a.	n.a.	ANSI-DIN-IEC	
NOTE					

scorrevole-1/8..1/2"

fisso-8..10MA fisso-1/8..1/2"

liscia

diametro mm. (da .. a) attacco al processo

GUAINA

contatto

APPLICAZIONI

TPICE

NOTE

fluidi solidi

TIPO DI MISURA

AISI304-316-310_INC600

-50.800 PT100

range temperatura °C (min/

T-J-E-K-N -50..1000*

range temperatura °C (min/

max) tipo

RTD

anche in esecuzione antideflagrante EEXII

anche con doppio elemento

impianti termici industriali *secondo il modello

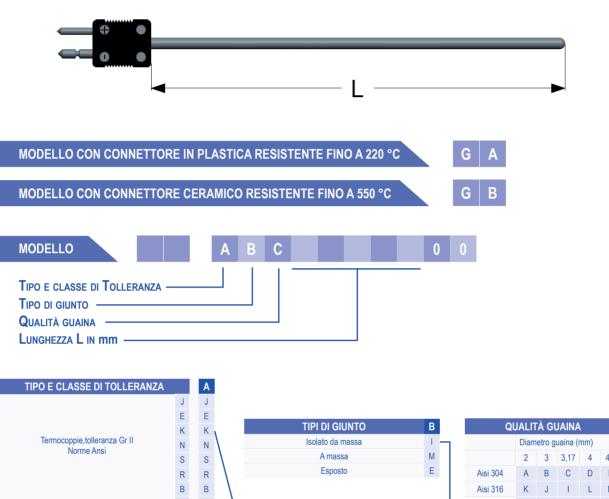
tubazioni condotte forni industriali

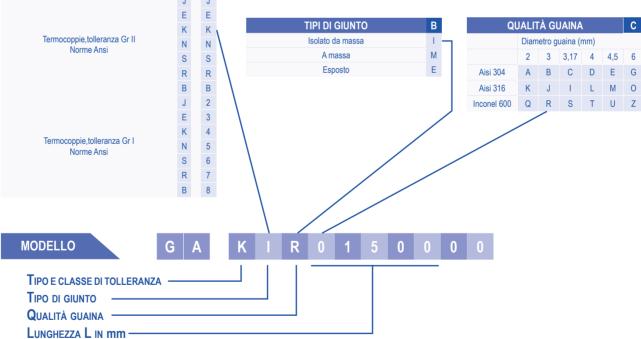
macchine industriali in genere

C

A TERMOTECNICA

NOTE TECNICHE


Form da compilare in caso di richiesta di quotazione di prodotti non standard, o customizzati.


Ragione social	e (Nome	e, indiriz	zo, te	l.)		Disegno							
Applicazione													
Data		Quanti	tà	Prezzi/a	nno								
Termocoppia (b	arrare (con una	X)										
B E J	K	N	R	S T									
Giunto:		a ma	ssa	isolato	esposto								
Classe di toller	anza:	stand	ard	special									
Elemento:		singo	lo	doppio									
Termoresistenz	a (barra	are con	una X)		Cavo di collegamer	nto (se prese	ente)					
	1000	Pt500		Ni100	Ni1000	Lunghezza (mt):			cod.colori	ANSI	IEC	DIN	
Altro Specificar						Sezione e n° condu	uttori:						
Collegamento:		2 fili		3 fili	4 fili	Isolamento primario	D:	vetro	teflon	gomma sil.	Pvc	altro:	
Classe di toller	anza:	В	Α	1/2B	1/3B	Isolamento second	ario:	vetro	teflon	gomma sil.	Pvc	altro:	
Elemento:		Singo	olo	Doppio		Schermatura:		Rame	stagnato	Inox	altro:		
Guaina ed isola	amento	(barrare	con L	ına X)									
Isolamento:	MgO			isolatori	altro:	Qualità guaina:	304SS	316SS	310SS	Inc. 600	altro:		
Indicare il tipo	_		on (cor	nnettori fas	ton etc.)			tino di col	lea elettrico	(connettori, fa	ston etc.)	١	
					,								
Ambiente di lav				X									
Temperatura:		ninima			°C]	massima [°C]		continua [°C]
Atmosfera:	inerte			idante	riducente	vuoto							
Di sistema:	vibraz	ioni	sho	ck termici	altro:								
Note:													

TERMOCOPPIE SERIE STANDARD

ESEMPIO FORMAZIONE CODICE PER DENOMINAZIONE PRODOTTO

► Termocoppie serie ossido minerale (MgO₂) con connettore compensato tipo standard

Esempio codice: Termocoppia in ossido minerale (MgO₂) tipo K diam. 3 mm guaina in inconell 600 L=1500 mm giunto isolato

Modello GAKIR0150000

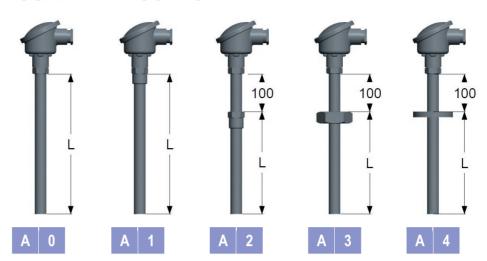
TERMOCOPPIESERIE STANDARD CON GUAINA IN ACCAIO Serie A0-A1-A2-A3-A4

CON GUAINA IN ACCAIO Serie A0-A1-A2-A3-A4

Questa serie di termocoppie dalla costruzione semplice e robusta, è idonea per tutte le applicazioni nelle quali la barriera protettiva dell'elemento sensibile risulta fondamentale. Ciò è garantito dalla qualità delle guaine protettive (AISI serie 400, 300, e INCONELL 600) che anche in condizioni di elevata temperatura, rappresentano un efficace protezione all'azione demolitiva dei gas. Seconda il grado di gravosità ambientale sono realizzate con semplice o doppia guaina (esterna acciaio, interna ceramica), con elementi classici costituiti da fili calibrati ed isolatori ceramici, o con cavo mantello ed isolamento in ossido di magnesio.

Applicazioni tipiche:

- Industria chimica e petrolchimica
- Industria metallurgica e siderurgica
- Industria dei laterizi


LA TERMOTECNICA, produce secondo elevati standard qualitativi interni, ed in conformità alle normative internazionali di riferimento

- UNI 7938
- IEC 584
- ANSI / DIN

L'impiego di attrezzature sofisticate come microscopi, micromanipolatori, impianti di saldatura e soprattutto di personale altamente specializzato, garantisce la costanza della qualità e della precisione. Su specifica richiesta del cliente, vengono rilasciati documenti di certificazione del prodotto.

TERMOCOPPIE SERIE STANDARD

CON GUAINA IN ACCIAIO

MODELLO

LUNGHEZZA L IN mm -

TIPO DI INSERTO

MODELLO A B C D E TIPO E CLASSE DI TOLLERANZA TIPO DI GIUNTO QUALITÀ GUAINA TIPO DI TESTINA RACCORDI O FLANGE

Conne

DATI TECNICI

- Temperatura di funzionamento: 0 .. 1200
 C max (attenzione!! dipende dal tipo di TC e dalla guaina, verificare i limiti nelle note tecniche)
- Precisione: secondo ANSI MC96.1/IEC 584
- Grado di protezione: IP55
- Connessioni elettriche 1/2" gas

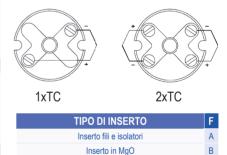
TIPO E CLASSE DI TOLLERANZA Α K Termocoppie,tolleranza Gr II N N Norme Ansi S R R Е 3 4 K Termocoppie,tolleranza Gr I N 5 Norme Ansi S 6 R

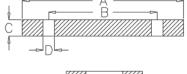
TIPI DI GIUNTO	В	В
	Isolato	Esposto
1 Giunto fili e isolatori	1	3
2 Giunti separati fili e isolatori	4	5
2 Giunti comuni fili e isolatori	6	8
1 Giunto MgO	9	Α
2 Giunti separati MgO	В	С
2 Giunti comuni MgO	D	F

	QL	JALIT	À GL	JAIN/	١			Α
		D	iametr	o guai	na (mr	n)		
	12	14	15	16	3/8	20	1/2	3/4
Aisi 446					Т			Н
Aisi 446*								1
Aisi 310	- [L		С	М	N	0	Р
Aisi 310*		2		Е	3	4	5	6
Inconel 600			Q		R	S	U	
Inconel 600*			7		8	9		

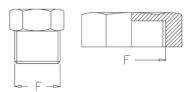
*Con ulteriore protezione ceramica interna

Esecuzioni speciali a richiesta




FLANGE	(UNI 2278 F	PN16) PER	SERIE A4	Ε
Α	В	С	D	
90	60	12	14	Q
95	65	12	14	R
105	70	14	14	S

FLANGE (UNI 2278 F	PN16) PER SERIE A0	Ε
Α	С	
70	6	Т
100	9	U
RACCORDO INOX P	ER SERIE A1-A2-A3	Ε


RACCO	RACCORDO INOX PER SERIE A1-A2-A3								
F (gas)	DIAMETRO TUBI (mm)								
	12	14	15	16	3/8	20	1/2	3/4	
3/8	2								
1/2"	3	3	3	3					
3/4"	4	4	4	4	4	4			
1"	5	5	5	5	5	5	5		
1" 1/4	6	6	6	6	6	6	6	6	
1" 1/2	7	7	7	7	7	7	7	7	
2"	8	8	8	8	8	8	8	8	

COLLEGAMENTI ELETTRICI

TERMOCOPPIESERIE STANDARD CON GUAINA IN CERAMICA Serie C1-C2-C3-C4

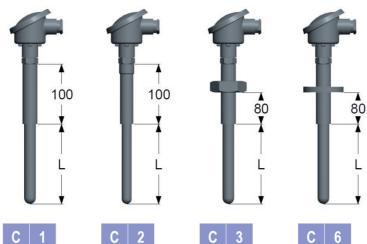
CON GUAINA IN CERAMICA

Serie C1-C2-C3-C4

Questa serie di termocoppie prevede un ampia varietà di scelte per dare al progettista la possibilità di soddisfare le più svariate esigenze applicative. Fra le molteplici varianti costruttive, la possibilità della scelta delle guaine ceramiche (nei vari diametri commerciali), il numero complessivo delle protezioni (da una a tre), ed ancora soluzioni diverse per il tipo di testa di connessione, l' attacco al processo, il numero e tipo degli inserti. Normalmente applicate nei processi dove la temperatura di esercizio risulta incompatibile con le guaine metalliche, esse sono in prevalenza realizzate con inserti a metallo nobile (Platino, tipo S,R,B). Vi sono comunque molte applicazioni dove è possibile l'utilizzo di elementi a metallo base, ma la temperatura sconsiglia la protezione metallica.

Applicazioni tipiche:

- Industria del vetro
- Camini, inceneritori
- Industria ceramica


LA TERMOTECNICA, produce secondo elevati standard qualitativi interni, ed in conformità alle normative

internazionali di riferimento:

- UNI 7938
- IEC 584
- ANSI / DIN

L'impiego di attrezzature sofisticate come microscopi, micromanipolatori, impianti di saldatura e soprattutto di personale altamente specializzato, garantisce la costanza della qualità e della precisione. Su specifica richiesta del cliente, vengono rilasciati documenti di certificazione del prodotto.

CON GUAINA IN CERAMICA

MODELLO

LUNGHEZZA L IN mm -

TIPO DI INSERTO -

MODELLO TIPO E CLASSE DI TOLLERANZA TIPO DI ELEMENTO -QUALITÀ GUAINA -TIPO DI TESTINA -RACCORDI O FLANGE

DATI TECNICI

- Temperatura di funzionamento: 0 .. 1600 °C max (attenzione!! dipende dal tipo di TC e dalla guaina, verificare i limiti nelle note tecniche)
- Precisione: secondo ANSI MC96.1/IEC 584
- · Grado di protezione: IP55
- Connessioni elettriche 1/2" gas

TIPO E CLASSE DI TOLLERANZA						
	N	N				
	K	K				
Termocoppie, tolleranza Gr I Norme Ansi	N	N				
	S	S				
	R	R				
	N	2				
	K	4				
Termocoppie, tolleranza Gr II Norme Ansi	N	5				
	S	6				
	R	7				

Elemento singolo								
Elemento doppio								
LIT	À Gl	JAIN	IA				С	
6	8	10	15	16	17	20	26	
10	12	14	20	1/2"	1/2"	3/4"	32	
	Α	В	С	D	Е	F		
			G	Н	1	L		
		M	N	0	Р	Q	R	
R	S	Т	U			٧		
			Z		1			
							2	
							3	
							4	
	ALITA 6 10	emento de ALITÀ GUA 6 8 10 12 A	emento doppio LITÀ GUAIN 6 8 10 10 12 14 A B	LITÀ GUAINA 6 8 10 15 10 12 14 20 A B C G G M N N R S T U	ALITÀ GUAINA 6 8 10 15 16 10 12 14 20 1/2* A B C D G H M N O R S T U	ALITÀ GUAINA 6 8 10 15 16 17 10 12 14 20 1/2° 1/2° A B C D E G H I M N O P R S T U	ALITÀ GUAINA 6 8 10 15 16 17 20 10 12 14 20 1/2" 1/2" 3/4" A B C D E F G H I L M N O P Q R S T U V	

TIPO DI TESTINA						
Testa DIN B	В	Testa DIN A T1	L			
	Æ					
Testa BUS	Р	T. Antideflagrante	D			

FLANGE (UNI 2278 PN16) PER SERIE C6

С

12

D

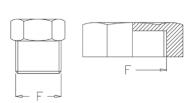
R S

В

В

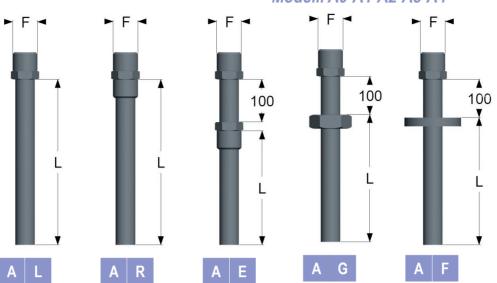
60

Α


90

95	65		12	2	14 14		R			
105	70		14	1			S			
115	75		14	ļ	1	4	Т			
RACCOR	DO IN	O INOX PER SERIE C2-C3								
F (gas)		D	IAMET	RO TU	JBI (m	m)				
	10	12	14	20	1/2	3/4	32			
3/8	Е									
1/2"	F	F								
3/4"	G	G	G	G						
1"	Н	Н	Н	Н	Н					
1" 1/4	-1	-1	1	-1	1	1				
1" 1/2	L	L	L	L	L	L	L			
2"	M	М	M	М	M	M	М			
TIPO DI INSERTO										
			e isolat				F			
	mse	I to IIII	e isolal	UII			A			

	COLLEGAM	ENTI ELETTRICI
L		
	1xTC	2xTC


	<u> </u>	
V_	L ← B →	
C		
A T	-D-	

Inserto in MgO

TERMOCOPPIE SERIE STANDARD

GUAINE DI RICAMBIO IN ACCIAIO Modelli A0-A1-A2-A3-A4

MODELLO

MODELLO

A B C 1 0 (

QUALITÀ GUAINA -

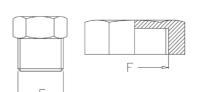
RACCORDI O FLANGE

MISURA STANDARD

LUNGHEZZA L IN mm -

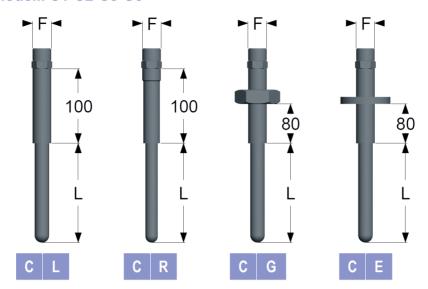
QUALITÀ GUAINA								
		Diametro guaina (mm)						
	12	14	15	16	3/8	20	1/2	3/4
Aisi 446					Т			Н
Aisi 446*								1
Aisi 310	-1	L		С	М	N	0	Р
Aisi 310*		2		Е	3	4	5	6
Inconel 600			Q		R	S	U	
Inconel 600*			7		8	9		

FILETTO F1	В
1/2"	2
3/4"	4


FLANGE (UNI 2278 PN16) PER SERIE AF								
Α	В	С	D					
90	60	12	14	Q				
95	65	12	14	R				
105	70	14	14	S				

FLANGE (UNI 2278 PN16) PER SERIE AL						
Α	С					
70	6	Т				
100	Q	- 11				

RACCORD	O IN	INOX PER SERIE AR-AE-AG							
F (gas)		DIAMETRO TUBI (mm)							
	12	14	15	16	3/8	20	1/2	3/4	
1/2"	3	3	3	3					
3/4"	4	4	4	4	4	4			
1"	5	5	5	5	5	5	5		
1" 1/4	6	6	6	6	6	6	6	6	
1" 1/2	7	7	7	7	7	7	7	7	
2"	8	8	8	8	8	8	8	8	



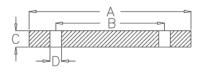
DATI TECNICI

- Temperatura di funzionamento: 0 .. 1200
 C max (attenzione!! dipende dal tipo di TC e dalla guaina, verificare i limiti nelle note tecniche)
- · Grado di protezione: non applicabile
- Connessioni elettriche 1/2" gas

GUAINE DI RICAMBIO IN CERAMICA Modelli C1-C2-C3-C6

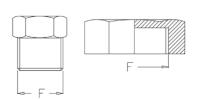
MODELLO

MODELLO

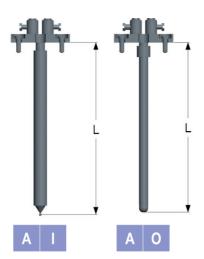

QUALITÀ GUAINA FILETTO F -RACCORDI O FLANGE MISURA STANDARD LUNGHEZZA L IN mm -

n	ΑT		\sim 1	νП	\sim
U	ΑI		ωI	М	u

- Temperatura di funzionamento: 0 .. 1600 °C max (attenzione!! dipende dal tipo di TC e dalla guaina, verificare i limiti nelle note tecniche)
- · Grado di protezione: non applicabile
- Connessioni elettriche 1/2" gas


QUALITÀ GUAINA							Α	
d. Ceramica (mm)	6	8	10	15	16	17	20	26
d. Cannotto (mm)	10	12	14	20	1/2"	1/2"	3/4"	32
1 Pitagoras (610)		Α	В	С	D	Е	F	
2 Pitagoras (610)				G	Н	-1	L	
1Pitagoras (610) 1Allumina (610)			M	N	0	Р	Q	R
1Allumina (710)	R	S	Т	U			٧	
2 Allumina (710)				Z		1		
1 Sillimantin (530) 2 Pitagoras (610)								2
1 Sillimantin (530) 1 Pitagoras (610) 1 Allumina (710)								3
1 Sillimantin (530) 2 Allumina (710)								4

FLANGE (UNI 2278 PN16) PER SERIE CE					
Α	В	С	D		
90	60	12	14	Q	
95	65	12	14	R	
105	70	14	14	S	
115	75	14	14	Т	


FILETTO F1	В
1/2"	2
3/4"	4

RACCORDO INOX PER SERIE CR-CG						Е	
F (gas)		DIAM	ETRC	TUBI	(mm)		
	10	12	14	20	1/2	3/4	32
3/8	Е						
1/2"	F	F					
3/4"	G	G	G	G			
1"	Н	Н	Н	Н	Н		
1" 1/4	-1	-1	1	-1	-1	-1	
1" 1/2	L	L	L	L	L	L	L
2"	М	М	М	М	М	М	M

TERMOCOPPIEserie STANDARD

INSERTI DI RICAMBIO

MODELLO

MODELLO A B C C D 0

TIPO E CLASSE DI TOLLERANZA

TIPO DI INSERTO

LUNGHEZZA L IN mm

TIPO DI GIUNTO

TIPO DI GIUNTO

TIPO E CLASSE DI TOLLERANZA		Α
	J	J
	Е	Е
	K	K
Termocoppie, tolleranza Gr I Norme Ansi	N	N
	S	N
	R	R
	В	В
	J	2
	Е	3
	K	4
Termocoppie, tolleranza Gr II	N	5
Norme Ansi	S	6
	R	7
	В	8

TIPO DI FRUTTO CERAMICO	С	С
Senza frutto ceramico	S	Z
Per testina DIN B / BUS	С	В
Per testina DIN A T1	С	L
Per testina DIN A T2	С	Р
Per testina Antideflagrante	С	D
TIDI DI CILINTO		В

	TIPI DI GIUNTO	D
Elemento singolo	Elemento doppio	
Isolato da massa	Comuni e isolati da massa (per serie A0)	-1
	Separati isolati da massa(per serie A0)	S
A massa	A massa (per serie A0)	М
	Isolati esposi (per serie A0-AI)	Р
Esposto	Comuni esposti (per serie A0- AI	Е

TIPO DI INSE	RTO	В			
Inserto fili e isolatori					
Diametro fili	Elemento				
0.35	singolo	1			
0.35	doppio	2			
0.5	singolo	3			
0.5	doppio	4			
1.63	singolo	5			
1.63	doppio	6			
2.3	singolo	7			
2.3	doppio	8			
3.26	singolo	9			
3.26	doppio	0			
Inserto in	MgO				
Diametro MgO	Elemento				
3	singolo	G			
3	doppio	Н			
4	singolo	L			
4	doppio	М			
4.5	singolo	Α			
4.5	doppio	В			
6	singolo	С			
6	doppio	D			
8	singolo	Е			
8	doppio	F			

DATI TECNICI

- Temperatura di funzionamento: 0 .. 1600 °C max (attenzione!! dipende dal tipo di TC e dalla guaina, verificare i limiti nelle note tecniche)
- Precisione: secondo ANSI MC96.1/IEC 584
- · Grado di protezione: non applicabile
- Connessioni elettriche 1/2" gas

COLLEGAMENTI ELETTRICI

1xTC

TERMOCOPPIESERIE TSM

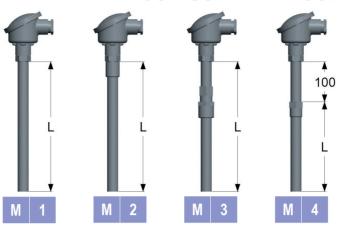
SERIE TSM

Questa serie di termocoppie e termoresistenze dalla costruzione semplice e robusta, è idonea per tutte la applicazioni dove la temperatura di utilizzo consente l'utilizzo di guaine di protezione di materiali meno pregiati rispetto alla serie standard (AISI 446-AISI 310-INCONELL600). I materiali di protezione per questa serie di termoelementi sono principalmente l'AISI 304 per gli impieghi generici e l'AISI 316 per le applicazioni alimentari. Questa serie può essere costruita con inserto di termocoppia (K J E T) oppure con elementi a termoresistenza (Pt100) con collegamenti a 2-3-4 fili.

Applicazioni tipiche:

- Processi
- Alimentare
- Chimica

LA TERMOTECNICA, produce secondo elevati standard qualitativi interni, ed in conformità alle normative


internazionali di riferimento:

- UNI 7938/7937
- IEC 854/751
- ANSI DIN

L'impiego di attrezzature sofisticate come microscopi, micromanipolatori, impianti di saldatura e soprattutto di personale altamente specializzato, garantisce la costanza della qualità e della precisione. Su specifica richiesta del cliente, vengono rilasciati documenti di certificazione del prodotto.

TERMOCOPPIE SERIE TSM

CON GUAINA IN ACCIAIO

MODELLO

MODELLO

TIPO E CLASSE DI TOLLERANZA

TIPO DI GIUNTO

TIPO DI TESTINA

QUALITÀ GUAINA

RACCORDI —

LUNGHEZZA L IN mm -

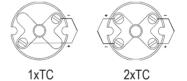
TIPO E CLASSE DI TOLLERANZA		Α		
Т		Т		
Termocoppie tolleranza GR II		J		
Norme Ansi		Е		
K		K		
Т		1		
Termocoppie tolleranza GR I		2		
Norme Ansi E		3		
K		4		
Termoresistenza pt100 OHM a 0 °C 1 DIN		Α		
Termoresistenza pt100 OHM a 0 °C 1/2 DIN				
Termoresistenza pt100 OHM a 0 °C 1/3 DIN				
Termoresistenza pt100 OHM a 0 °C 1/5 DIN				
Termoresistenza pt100 OHM a 0 °C 1/10DII	1	Е		

TIPI DI GIUNTO	В
Termocoppie	
Isolato da massa (elemento singolo)	1
Isolato da massa (elemento doppio)	4
A massa	2
Termoresistenze	
1 pt 100 a 2 fili	1
1 pt 100 a 3 fili	2
1 pt100 a 4 fili	3
2 pt100 a 2 fili	4
2 pt100 a 3 fili	5

TIPO I	DI TE	STINA	С
Testa DIN B	В	Testa Mignon	V
	3		
Testa Miniatura	М	Testa BUS	Р

Ql	JALI1	ΓÁ G	UAIN	A			D
		Dia	ametro	o guai	na (m	m)	
	4	5	6	8	10	12	14
Aisi 304	1	2	3	В	Е	F	G
Aisi 316	Α	В	С	4	5	6	7

RAC	CORE	OI (A)				Ε	
Raccordi in inox		Diametro guaina (mm)					
maschi fissi per serie M2-M4		6	8	10	12	14	
	1/8	Α					
E11-44- E	1/4	В	В				
Filetto F	3/8	С	С	С	С		
	1/2	D	D	D	D	D	

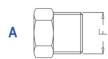

	RACC	ORE	OI (B)				Ε
	Raccordi in inox a compressione per serie M3		Diam	etro g	uaina	(mm)	
			6	8	10	12	14
		1/8	1				
E1 4 E	1/4	2	2				
	Filetto F	3/8	3	3	3	3	
		1/2	4	4	4	4	4

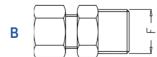
RACCORDI (C)								
Raccordi in ottone a compressione per serie M3		Diametro guaina (mm)						
		6	8	10	12	14		
Filetto F	1/8	5						
	1/4	6	6					
	3/8	7	7	7	7			
	1/2	8	8	8	8	8		

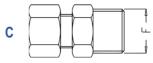
DATI TECNICI

- Temperatura di funzionamento: -50 .. 450 °C (attenzione!! tipo T max 400 °C)
- Precisione: secondo ANSI MC96.1/IEC 584 (sensori a termocoppia) IEC 751 (sensori a termoresistenza)
- Grado di protezione: IP55
- Connessioni elettriche 1/2" gas

COLLEGAMENTI ELETTRICI

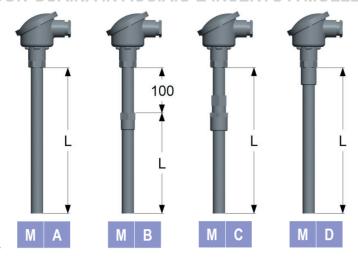





1xPT100 3 fili

1xPT100 4 fili

2xPT100 3+3 fili



TERMOCOPPIE SERIE TSM

CON GUAINA IN ACCIAIO E INSERTO A MOLLEGGIO

MODELLO

MODELLO

TIPO DI TESTINA -

A B C D

E 0

TIPO E CLASSE DI TOLLERANZA

TIPO DI GIUNTO

QUALITÀ GUAINA

RACCORDI

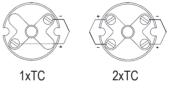
LUNGHEZZA L IN MM

TIPO E CLASSE DI TOLLERANZA						
	Т		Т			
Termocoppie tolleranza GR II Norme Ansi	J		J			
	Е		Е			
	K		K			
Termocoppie tolleranza GR I Norme Ansi	Т		1			
	J		2			
	Е		3			
	K		4			
Termoresistenza pt100 OHM a 0 °C 1		Α				
Termoresistenza pt100 OHM a 0 °C 1/2 DIN						
Termoresistenza pt100 OHM a 0 °C 1/3 DIN						
Termoresistenza pt100 OHM a 0 °C 1/5	DIN		D			
Termoresistenza pt100 OHM a 0 °C 1/1	0DIN		Е			

A massa Termoresistenze 1 pt 100 a 2 fili	1
Isolato da massa (elemento doppio) A massa Termoresistenze 1 pt 100 a 2 fili	1
A massa Termoresistenze 1 pt 100 a 2 fili	
Termoresistenze 1 pt 100 a 2 fili	4
1 pt 100 a 2 fili	2
	1
1 pt 100 a 3 fili	2
1 pt100 a 4 fili	3
2 pt100 a 2 fili	4
2 pt100 a 3 fili	5

Q	UALI	JALITÀ GUAINA							
		Diametro guaina (mm)							
	4	5	6	8	10	12	14		
Aisi 304	1	2	3	В	Е	F	G		
Aisi 316	Α	В	С	4	5	6	7		

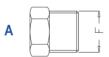
RACC	ORD	D				
Raccordi in inox a		Diam	etro g	uaina	(mm)	
compressione per serie MC		6	8	10	12	14
	1/8	1				
Filetto F	1/4	2	2			
Filetto F	3/8	3	3	3	3	
	1/2	4	4	4	4	4

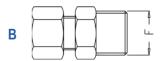

RACCORDI (C)						D	
Raccordi in ottone	Diametro guaina (mm)						
a compressione per serie MC		6	8	10	12	14	
Filetto F	1/8	5					
	1/4	6	6				
	3/8	7	7	7	7		
	1/2	8	8	8	8	8	

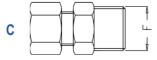
DATI TECNICI

- Temperatura di funzionamento: -50 .. 450 °C (attenzione!! tipo T max 400 °C)
- Precisione: secondo ANSI MC96.1/IEC 584 (sensori a termocoppia) IEC 751 (sensori a termoresistenza)
- Grado di protezione: IP55
- Connessioni elettriche 1/2" gas

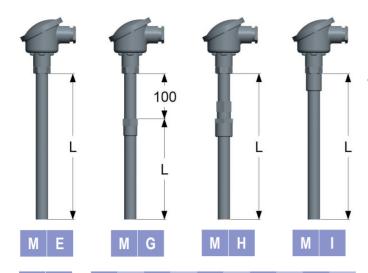
COLLEGAMENTI ELETTRICI






1xPT100 3 fili

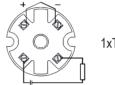
1xPT100 4 fili


2xPT100 3+3 fili

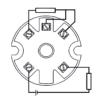
CON GUAINA IN ACCIAIO E TRASMETTITORE 4/20MA

DATI TECNICI

- Temperatura di funzionamento: -50 ... 450 °C (attenzione!! tipo T max 400 °C)
- Precisione: secondo ANSI MC96.1/ IEC 584 (sensori a termocoppia) DIN 43760/IEC 751/UNI 7937 (sensori a termoresistenza)
- · Grado di protezione: IP55
- Connessioni elettriche 1/2" gas
- · Indicare campo scala trasmettitore
- · Alimentazione 18 .. 36 V
- · Uscita linearizzata 4 .. 20 mA

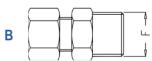

MODELLO

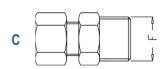
TIPO DI TRASMETTITORE


MODELLO

TIPO E CLASSE DI TOLLERANZA TIPO DI GIUNTO **Q**UALITÀ GUAINA RACCORDI LUNGHEZZA L IN mm -TIPO DI TESTINA

COLLEGAMENTI ELETTRICI




1xTC

1xPT100

TIPO	DI TE	STINA	Ε
			В
Testa DIN B	В	T. Antideflagrante	D
	Ï		
Testa BUS	Р		

TIPO E CLASSE DI TOLLERANZA J Termocoppie tolleranza GR II Norme Ansi Е Е K 1 2 Termocoppie tolleranza GR I Norme Ansi 3 4 Α Termoresistenza pt100 OHM a 0 °C 1 DIN Termoresistenza pt100 OHM a 0 °C 1/2 DIN В Termoresistenza pt100 OHM a 0 °C 1/3 DIN С Termoresistenza pt100 OHM a 0 °C 1/5 DIN D Termoresistenza pt100 OHM a 0 °C 1/10DIN

TIPI DI GIUNTO	В
Termocoppie	
Isolato da massA	1
A massa	2
Termoresistenze	
1 pt 100 a 2 fili	1
1 pt 100 a 3 fili	2

QUALITÀ GUAINA						
Diametro guaina (mm)						
	6	8	10	12	14	
Aisi 304	1	2	3	D	Е	
Aisi 316	Α	В	С	4	5	

1/8 5	serie MH	1/8 5 1/4 6 6 3/8 7 7 7 7 1/2 8 8 8 8 TIPO TRASMETTITORE Con sicurezza intrinseca Senza sicurezza intrinseca Con sicurezza con sicurezza con sicurezza con sicurezza	14					
Serza sicurezza Tinserto molleggiato DAT Serza sicurezza Inserto molleggiato DAT Serza sicurezza Uinserto molleggiato DAT Uinserto molleggiato DAT Serza sicurezza Uinserto molleggiato DAT Uinse		1/8	5					
3/8	Filetto F	1/4	6	6				
Inserto molleggiato DAT serie 100 Inserto molleggiato DAT serie 100 Inserto non molleggiato DAT serie 100 Inserto molleggiato DAT serie 100 Inserto molleggiato DAT serie 100 Inserto molleggiato DAT seria sigurezza intrinseca Inserto molleggiato DAT seria sigurezza intrinseca Inserto molleggiato DAT seria sigurezza intrinseca	Flietto F	3/8	7	7	7	7		
Inserto molleggiato DAT serie 100 Inserto non molleggiato DAT seie 100 Inserto non molleggiato DAT seie 100 Inserto molleggiato DAT seie 100 Inserto molleggiato DAT Senza sigurezza intrinseca Inserto molleggiato DAT Senza sigurezza intrinseca		1/2	8	8	8	8	8	
Inserto molleggiato DAT serie 100 Senza sicurezza intrinseca T Inserto non molleggiato DAT seie 100 Senza sicurezza intrinseca R Inserto molleggiato DAT Senza sicurezza intrinseca U Inserto molleggiato DAT Senza sicurezza intrinseca	TIPO TRA	SMET	TITO	ORE			F	
Inserto non molleggiato DAT seie 100 Inserto molleggiato DAT seie 200 Inserto molleggiato DAT Senza sicurezza intrinseca Inserto molleggiato DAT In	Inserto molleggiato [DAT	(za	S	
Inserto non molleggiato intrinseca R DAT seie 100 Senza sicurezza intrinseca U Inserto molleggiato DAT Senza sicurezza	serie 100		Se					
intrinseca Inserto molleggiato DAT Senza sigurezza	Inserto non molleggi	ato	(za	R	
Inserto molleggiato DAT Senza sicurezza	DAT seie 100	DAT seie 100					U	
serie 110 intrinseca		DAT	Se			zza	٧	
Inserto non molleggiato DAT Senza sicurezza serie 110 Senza sicurezza intrinseca Z		DAT	Se			zza	Z	

RACCORDI (A)

1/8 A

1/4 В В

RACCORDI (B)

1/8 1

1/4 2 2

RACCORDI (C)

Diametro guaina (mm)

3/8 C C C C

1/2 D D D D

Diametro guaina (mm)

3/8 3 3 3 3 1/2 4 4 4 4 4

Diametro guaina (mm)

6 8 10 12 14

6 8 10 12 14

Raccordi in inox

maschi fissi per serie MG-MI

Filetto F

Raccordi in inox a

compressione per serie MH

Filetto F

Raccordi in ottone a

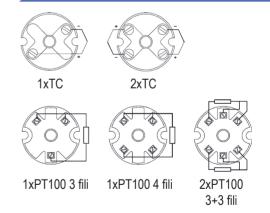
compressione per

LRMJ.

TERMOCOPPIE SERIE TSM.

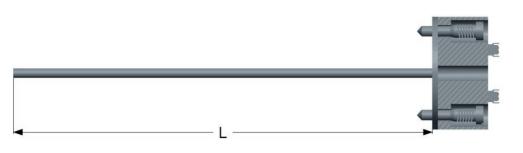
INSERTI A MOLLEGGIO CON BASETTA CERAMICA

MODELLO	M	L	A	В	С			0	0	0
TIPO E CLASSE DI TOLLE TIPO DI GIUNTO ——— DIAMETRO INSERTO —— LUNGHEZZA L IN mm —										



TIPI DI GIUNTO	В
Termocoppie	
Isolato da massa (elemento singolo)	1
Isolato da massa (elemento doppio)	4
A massa	2
Termoresistenze	
1 pt 100 a 2 fili	1
1 pt 100 a 3 fili	2
1 pt100 a 4 fili	3
2 pt100 a 2 fili	4
2 pt100 a 3 fili	5
DIAMETRO CONDA (mm)	^
DIAMETRO SONDA (mm)	С
4 Aisi 304	4
5 Aisi 304	5
6 Aisi 304	6
8 Aisi316	8

DATI TECNICI


- Temperatura di funzionamento: -50 .. 450 °C (attenzione!! tipo T max 400 °C)
- Precisione: secondo ANSI MC96.1/IEC 584 (sensori a termocoppia) IEC 751 (sensori a termoresistenza)

COLLEGAMENTI ELETTRICI

TERMOCOPPIE SERIE TSM

CON GUAINA IN ACCIAIO E TRASMETTITORE 4/20MA

MODELLO CON SICUREZZA INTRINSECA

M S

MODELLO SENZA SICUREZZA INTRINSECA

M T

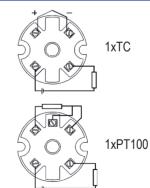
MODELLO A B C D 0 0

TIPO E CLASSE DI TOLLERANZA
TIPO DI GIUNTO

DIAMETRO INSERTO — LUNGHEZZA L IN mm -

TIPO DI TRASMETTITORE -

TIPO E CLASSE DI TOLLERANZA		Α	
	Т	Т	
Termocoppie, tolleranza Gr I	J	J	DAT :
Norme Ansi	Ε	Е	
	K	K	DAT
	Т	1	
Termocoppie, tolleranza Gr II	J	2	
Norme Ansi	Е	3	
	K	4	
Termoresistenza pt100 OHM a 0 °C 1 DIN		Α	
Termoresistenza pt100 OHM a 0 °C 1/2 DIN		В	
Termoresistenza pt100 OHM a 0 °C 1/3 DIN		С	
Termoresistenza pt100 OHM a 0 °C 1/5 DIN		D	
Termoresistenza pt100 OHM a 0 °C 1/10DIN		Е	


TIPI DI GIUNTO	В
Termocoppie	
Isolato da massa (elemento singolo)	1
Isolato da massa (elemento doppio)	4
A massa	2
Termoresistenze	
1 pt 100 a 2 fili	1
1 pt 100 a 3 fili	2
1 pt100 a 4 fili	3
2 pt100 a 2 fili	4
2 pt100 a 3 fili	5
DIAMETRO CONDA ()	
DIAMETRO SONDA (mm)	С
4 Aisi 304	4
5 Aisi 304	5
6 Aisi 304	6
8 Aisi316	8

TIPO TR	ASMETTITORE	D
	Con sicurezza intrinseca	S
DAT serie 100	Senza sicurezza intrinseca	Т
DAT serie 110	Senza sicurezza intrinseca	٧

DATI TECNICI

- Temperatura di funzionamento: -50 .. 450 °C (attenzione!! tipo T max 400 °C)
- Precisione: secondo ANSI MC96.1/IEC 584 (sensori a termocoppia) IEC 751(sensori a termoresistenza)
- Grado di protezione: IP55
- Connessioni elettriche 1/2" gas
- Indicare campo scala trasmettitore
- Alimentazione 18 .. 32 V
- Uscita linearizzata 4 .. 20 Ma

COLLEGAMENTI ELETTRICI

SERIE OSSIDO MINERALE (MgO)

In questa sezione sono proposte, termocoppie e termoresistenze realizzate con cavi a mantello ed isolamento in ossido di Magnesio (MgO). Utilizzabili in svariate applicazioni grazie alla varietà di soluzioni disponibili, sono in grado di soddisfare qualsiasi esigenza del progettista. Le guaine esterne sono disponibili in A304, A116, INC600, A321 etc. Realizzate con connettore integrato (permanentemente connesso alla sonda) o con cavo integrato, resistenti alle vibrazioni alle pressioni, di facile installazione grazie a molteplici soluzioni per il fissaggio, rappresentano sempre una valida soluzione. Le sonde a termocoppia nei diametri da 0,5 mm a 8 mm e nelle calibrazioni J E K T N S, coprono in pratica un campo di misura da -200 a +1500 °C. Le sonde a termoresistenza (Pt100, Ni100, Pt1000) realizzate con tecnica REVERSE o END CAP sono disponibili a partire dal diametro 3 mm fino a 8 mm, particolarmente adatte nelle applicazioni soggette a vibrazioni.

Applicazioni tipiche:

- Forni
- Centrali termiche
- Raffinerie
- Motori

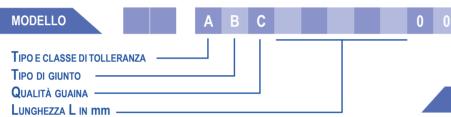
LA TERMOTECNICA, produce secondo elevati standard qualitativi interni, ed in conformità alle normative internazionali di riferimento.

Applicazioni tipiche:

- Forni
- Centrali termiche
- Raffinerie
- Motori

L'impiego di attrezzature sofisticate come microscopi, micromanipolatori, impianti di saldatura e soprattutto di personale altamente specializzato, garantisce la costanza della qualità e della precisione. Su specifica richiesta del cliente, vengono rilasciati documenti di certificazione del prodotto.

CON CONNETTORE COMPENSATO STANDARD



MODELLO CON CONNETTORE IN PLASTICA RESISTENTE FINO A 220 °C

GA

MODELLO CON CONNETTORE CERAMICO RESISTENTE FINO A 550 °C

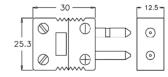
G B

M E

TIPO E CLASSE DI TOLLERANZA Α Е K Termocoppie, tolleranza Gr I N N N R R В В 2 Ε 3 4 Termocoppie, tolleranza Gr II N 5 Norme Ansi 6 R 7 В 8 TIPI DI GIUNTO В

QUALITÀ (GUA	INA				С
		Diam	etro g	uaina	(mm)	
	2	3	3.17	4	4.5	6
Aisi 304	Α	В	С	D	Е	G
Aisi 316	K	J	-1	L	M	0
Inconel 600	Q	R	S	Т	U	Z

Isolato da massa


Esposto

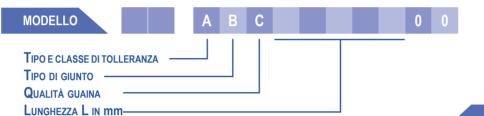
DATI TECNICI

- Temperatura di funzionamento: in funzione del diametro e del tipo di termocoppia (verificare le specifiche nelle note tecniche)
- Precisione: secondo ANSI MC96.1/IEC 584
- Raggio di curvatura, tre volte il diametro
- Massima temperatura di ultilizzo del connettore: tipo GA 220 °C - tipo GB 550 °C

COLLEGAMENTI ELETTRICI

Connettore compensato per termocoppia tipo "standard"

CON CONNETTORE COMPENSATO STANDARD E RACCORDO FISSO

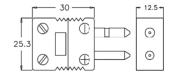


MODELLO CON CONNETTORE IN PLASTICA RESISTENTE FINO A 220 °C

G C

MODELLO CON CONNETTORE CERAMICO RESISTENTE FINO A 550 °C

G D



DATI TECNICI

- Temperatura di funzionamento: in funzione del diametro e del tipo di termocoppia (verificare le specifiche nelle note tecniche)
- Precisione: secondo ANSI MC96.1/IEC 584
- Raggio di curvatura, tre volte il diametro
- Massima temperatura di ultilizzo del connettore: tipo GC 220 °C - tipo GD 550 °C

COLLEGAMENTI ELETTRICI

Connettore compensato per termocoppia tipo "standard"

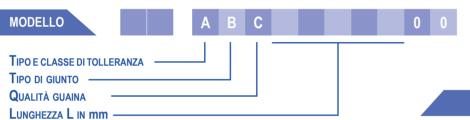
MODELLO

M F A 0 0 0 0 0 0

FILETTO F DI ATTACCO LUNGHEZZA L IN MM

FILETTO F	Α
8 MA	Α
10MA	В
1/8 Gas	С
1/4 Gas	D
3/8 Gas	Е
1/2 Gas	F

CON CONNETTORE COMPENSATO STANDARD E RACCORDO SCORREVOLE



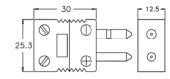
MODELLO CON CONNETTORE IN PLASTICA RESISTENTE FINO A 220 °C

MODELLO CON CONNETTORE CERAMICO RESISTENTE FINO A 550 °C

GE

G F

Allia	33a					IVI
Espo	sto					Е
QUALITÀ (GUA	INA				С
		Diam	etro g	uaina	(mm)	
	2	3	3.17	4	4.5	6
Aisi 304	Α	В	С	D	Е	G
Aisi 316	K	J	-1	L	M	0

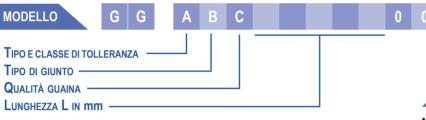

Q R S T U Z

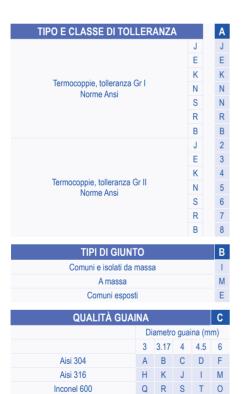
DATI TECNICI

- Temperatura di funzionamento: in funzione del diametro e del tipo di termocoppia (verificare le specifiche nelle note tecniche)
- Precisione: secondo ANSI MC96.1/IEC 584
- · Raggio di curvatura, tre volte il diametro
- Massima temperatura di ultilizzo del connettore: tipo GC 220 °C - tipo GD 550 °C

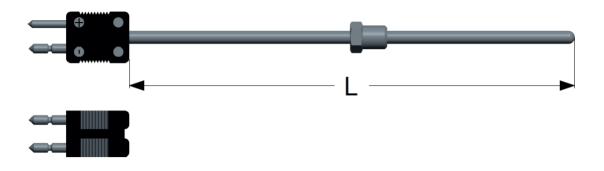
COLLEGAMENTI ELETTRICI

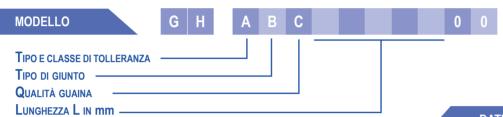
Connettore compensato per termocoppia tipo "standard"


Raccordo scorrevole pag. 79


Inconel 600

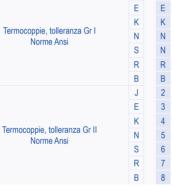
CON CONNETTORE COMPENSATO DOPPIO STANDARD


DATI TECNICI


- Temperatura di funzionamento: in funzione del diametro e del tipo di termocoppia (verificare le specifiche nelle note tecniche)
- Precisione: secondo ANSI MC96.1/IEC 584
- Raggio di curvatura, tre volte il diametro
- Massima temperatura di ultilizzo del connettore, 220 °C

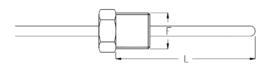
COLLEGAMENTI ELETTRICI

Connettore compensato per termocoppia doppio elemento, tipo "standard"


CON CONNETTORE COMPENSATO DOPPIO STANDARD E RACCORDO FISSO

Termocoppie, tolleranza Gr I Norme Ansi

TIPO E CLASSE DI TOLLERANZA

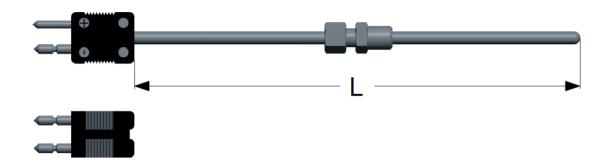

HPI DI G	UNI	U			В
Comuni e isola	ti da n	nassa			1
A mas	sa				М
Comuni e	sposti				Е
QUALITÀ G	UAII	NA			С
	Di	ametro	gua	ina (m	m)
	3	3.17	4	4.5	6
Aisi 304	Α	В	С	D	F
Aisi 316	Н	K	J	-1	M
AISI 3 IO					

DATI TECNICI

- Temperatura di funzionamento: in funzione del diametro e del tipo di termocoppia (verificare le specifiche nelle note tecniche)
- Precisione: secondo ANSI MC96.1/IEC 584
- · Raggio di curvatura, tre volte il diametro
- Massima temperatura di ultilizzo del connettore, 220 °C

COLLEGAMENTI ELETTRICI

Connettore compensato per termocoppia doppio elemento, tipo "standard"



MODELLO FILETTO F DI ATTACCO

FILETTO F 8 MA 10MA В 1/8 Gas С 1/4 Gas D 3/8 Gas Ε 1/2 Gas

LUNGHEZZA L IN mm

CON CONNETTORE COMPENSATO DOPPIO STANDARD E RACCORDO SCORREVOLE

MODELLO G I A B C TIPO E CLASSE DI TOLLERANZA TIPO DI GIUNTO QUALITÀ GUAINA LUNGHEZZA L IN mm

TIPO E CLASSE DI TOLLERANZA		Α
	J	J
	Е	Е
	K	K
Termocoppie, tolleranza Gr I Norme Ansi	N	Ν
Northe Alisi	S	N
	R	R
	В	В
	J	2
	Е	3
	K	4
Termocoppie, tolleranza Gr II Norme Ansi	N	5
Northe Alisi	S	6
	R	7
	В	0
		8
TIPI DI GIUNTO		В
TIPI DI GIUNTO Comuni e isolati da massa		
		В
Comuni e isolati da massa		В
Comuni e isolati da massa A massa		B I M
Comuni e isolati da massa A massa Comuni esposti		B I M E
Comuni e isolati da massa A massa Comuni esposti QUALITÀ GUAINA		B I M E
Comuni e isolati da massa A massa Comuni esposti QUALITÀ GUAINA Diametro gua	aina (m	B I M E
Comuni e isolati da massa A massa Comuni esposti QUALITÀ GUAINA Diametro gue 3 3.17 4	aina (m 4.5	B I M E C m)

DATI TECNICI

- Temperatura di funzionamento: in funzione del diametro e del tipo di termocoppia (verificare le specifiche nelle note tecniche)
- Precisione: secondo ANSI MC96.1/IEC 584
- · Raggio di curvatura, tre volte il diametro
- Massima temperatura di ultilizzo del connettore, 220 °C

COLLEGAMENTI ELETTRICI

Connettore compensato per termocoppia doppio elemento, tipo "standard"

Raccordo scorrevole pag. 79

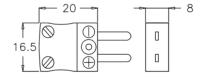
TERMOCOPPIE SERIE OSSIDO MINERALE (MgO

CON CONNETTORE COMPENSATO MIGNON

MODELLO G L A B C 0 TIPO E CLASSE DI TOLLERANZA TIPO DI GIUNTO QUALITÀ GUAINA LUNGHEZZA L IN mm

Е

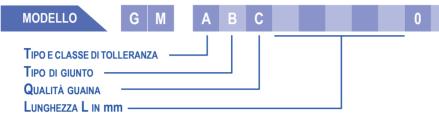
QUALITÀ GUAINA							
	Diametro guaina (mm)						
	0.5	1	1.5	2	3	3.17	
Aisi 304	Α	В	С	Е	F	G	
Aisi 316	Н	K	J	L	М	N	
Inconel 600	0	Р	0	S	Т	Ш	


Esposto

DATI TECNICI

- Temperatura di funzionamento: in funzione del diametro e del tipo di termocoppia (verificare le specifiche nelle note tecniche)
- Precisione: secondo ANSI MC96.1/IEC 584
- Raggio di curvatura, tre volte il diametro
- Massima temperatura di ultilizzo del connettore, 220 °C

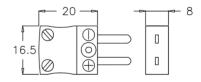
COLLEGAMENTI ELETTRICI


Connettore compensato per termocoppia tipo "miniatura"

TERMOCOPPIE SERIE OSSIDO MINERALE (MgO)

CON CONNETTORE COMPENSATO MIGNON E RACCORDO FISSO

Isolato da massa							
A	A mas	sa				M	
Esposto							
QUALI	TÀ G	UAII	NA			С	
		Diam	etro g	uaina	(mm)		
	0.5	1	1.5	2	3	3.17	
Aisi 304	Α	В	С	Е	F	G	
Aisi 316	Н	K	J	L	М	N	
Inconel 600	0	Р	Q	S	Т	U	
inconei 600	U	Р	Q	5	ı	U	


TIPI DI GIUNTO

DATI TECNICI

- Temperatura di funzionamento: in funzione del diametro e del tipo di termocoppia (verificare le specifiche nelle note tecniche)
- Precisione: secondo ANSI MC96.1/IEC 584
- Raggio di curvatura, tre volte il diametro
- Massima temperatura di ultilizzo del connettore, 220 °C

COLLEGAMENTI ELETTRICI

Connettore compensato per termocoppia tipo "miniatura"

MODELLO M F A 0 0 0 0 0

FILETTO F	Α
8 MA	Α
10MA	В
1/8 Gas	С
1/4 Gas	D
3/8 Gas	Е
1/2 Gas	F

Esecuzioni speciali a richiesta

LUNGHEZZA L IN mm

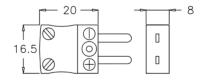
TERMOCOPPIE SERIE OSSIDO MINERALE (MgO

CON CONNETTORE COMPENSATO MIGNON E RACCORDO SCORREVOLE

MODELLO G N A B C 0 0 TIPO E CLASSE DI TOLLERANZA TIPO DI GIUNTO QUALITÀ GUAINA

LUNGHEZZA L IN mm -

TIPI DI GIUNTO	В
Isolato da massa	-1
A massa	M
Esposto	Е

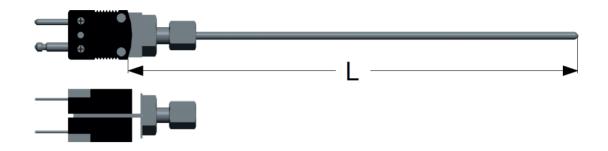

QUALITÀ GUAINA							
	0.5	1	1.5	2	3	3.17	
Aisi 304	Α	В	С	Е	F	G	
Aisi 316	Н	K	J	L	М	N	
Inconel 600	0	Р	Q	S	Т	U	

DATI TECNICI

- Temperatura di funzionamento: in funzione del diametro e del tipo di termocoppia (verificare le specifiche nelle note tecniche)
- Precisione: secondo ANSI MC96.1/IEC 584
- · Raggio di curvatura, tre volte il diametro
- Massima temperatura di ultilizzo del connettore, 220 °C

COLLEGAMENTI ELETTRICI

Connettore compensato per termocoppia tipo "miniatura"



Raccordo scorrevole pag. 79

TERMOCOPPIE SERIE OSSIDO MINERALE (MgO)

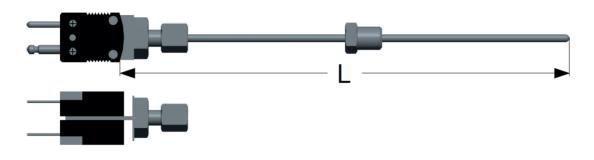
CON CONNETTORE COMPENSATO DOPPIO MIGNON

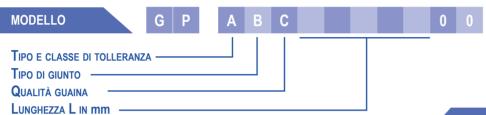
MODELLO G O A B C TIPO E CLASSE DI TOLLERANZA TIPO DI GIUNTO QUALITÀ GUAINA LUNGHEZZA L IN mm

S T U

TIPO E CLASSE DI TOLLE	RANZA		Α			
		J	J			
		Е	Е			
	K	K				
Termocoppie, tolleranza Gr I Norme Ansi		N	N			
North C And	S	N				
		R	R			
		В	В			
		J	2			
E						
	K	4				
Termocoppie, tolleranza Gr II Norme Ansi	N	5				
Northe Alisi		S	6			
		R	7			
		В	8			
TIPI DI GIUNTO			В			
Comuni e isolati da mas	sa		1			
A massa			М			
Comuni esposti			Е			
			С			
QUALITÀ GUAINA						
QUALITÀ GUAINA	Diamet	ro quaina				
QUALITÀ GUAINA	Diamet	ro guaina				
QUALITÀ GUAINA Aisi 304			a (mm)			

DATI TECNICI


- Temperatura di funzionamento: in funzione del diametro e del tipo di termocoppia (verificare le specifiche nelle note tecniche)
- Precisione: secondo ANSI MC96.1/IEC 584
- Raggio di curvatura, tre volte il diametro
- Massima temperatura di ultilizzo del connettore, 220 °C


COLLEGAMENTI ELETTRICI

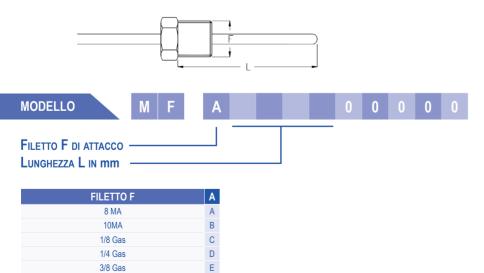
Connettore compensato per termocoppia, doppio elemento tipo "miniatura"

TERMOCOPPIE SERIE OSSIDO MINERALE (MgO

CON CONNETTORE COMPENSATO DOPPIO MIGNON E RACCORDO FISSO

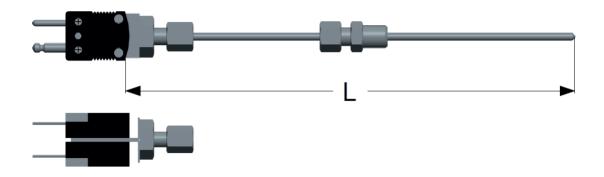
1/2 Gas

Comuni e isolati da massa							
A massa							
Comuni esposti							
QUALITÀ GUAINA C							
	Diametro guaina (mr						
	3	4					
Aisi 304	Е	F	G				
Aisi 316	L	М	N				
Inconel 600	S	T	U				


TIPI DI GIUNTO

DATI TECNICI

- Temperatura di funzionamento: in funzione del diametro e del tipo di termocoppia (verificare le specifiche nelle note tecniche)
- Precisione: secondo ANSI MC96.1/IEC 584
- Raggio di curvatura, tre volte il diametro
- Massima temperatura di ultilizzo del connettore, 220 °C


COLLEGAMENTI ELETTRICI

Connettore compensato per termocoppia doppio elemento tipo "miniatura"

TERMOCOPPIE SERIE OSSIDO MINERALE (MgO)

CON CONNETTORE COMPENSATO DOPPIO MIGNON E RACCORDO SCORREVOLE

MODELLO G Q A B C

TIPO E CLASSE DI TOLLERANZA

TIPO DI GIUNTO

QUALITÀ GUAINA

LUNGHEZZA L IN mm

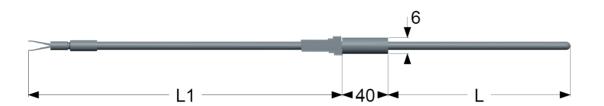
TIPO E CLASSE DI TOLLE	RANZA	4	Α			
		J	J			
		Е	Е			
	K	K				
Termocoppie, tolleranza Gr I Norme Ansi	N	N				
Norme Ansi	S	N				
	R	R				
	В	В				
		J	2			
E						
Termocoppie, tolleranza Gr II						
						Norme Ansi
		R	7			
		В	8			
TIPI DI GIUNTO			В			
Comuni e isolati da mas	ssa		-1			
A massa			М			
Comuni esposti			Е			
QUALITÀ GUAINA			С			
	Diame	tro guaina	(mm)			
	3	3.17	4			
Aisi 304	Е	F	G			

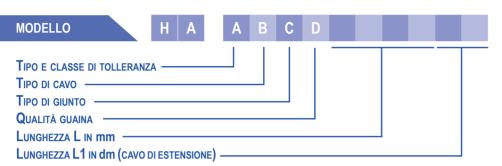
DATI TECNICI

- Temperatura di funzionamento: in funzione del diametro e del tipo di termocoppia (verificare le specifiche nelle note tecniche)
- Precisione: secondo ANSI MC96.1/IEC 584
- · Raggio di curvatura, tre volte il diametro
- Massima temperatura di ultilizzo del connettore, 220 °C

COLLEGAMENTI ELETTRICI

Connettore compensato per termocoppia, doppio elemento tipo "miniatura"


Raccordo scorrevole pag. 79


Aisi 316 Inconel 600

TERMOCOPPIE SERIE OSSIDO MINERALE (MgO) con cavo di estensione

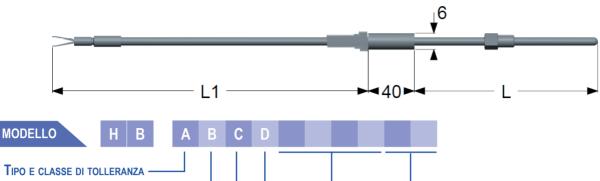
1 100

		TIPI DI GIUNTO								
Isolato da massa										
A massa										
Esposto								Е		
QUALITÀ GUAINA								D		
Diametro guaina (mm)										
1	1.5	2	3	3.17	4	4.5	6	8		
Α	В	D	Ε	F	G	Н	4			
K	J	L	М	N	0	Р	5			
Q	R	Т	U	W	Z	Χ	6	8		
	QUA 1 A K	Am Esp QUALITÀ 1 1.5 A B K J	A massa Esposto QUALITÀ GU Dia 1 1.5 2 A B D K J L	A massa Esposto QUALITÀ GUAIN. Diametro 1 1.5 2 3 A B D E K J L M	A massa Esposto QUALITÀ GUAINA Diametro guai 1 1.5 2 3 3.17 A B D E F K J L M N	A massa	A massa Esposto QUALITÀ GUAINA Diametro guaina (mm) 1 1.5 2 3 3.17 4 4.5 A B D E F G H K J L M N O P	A massa Esposto QUALITÀ GUAINA Diametro guaina (mm) 1		

TIPI DI CAVO	В
Sezione 2x 0.24 mm² isolamento pvc/schermo/pvc	Α
Sezione 2x0.22 mm² isolamento teflon nastrato schermo/teflon nastrato	В
Sezione 2x0.25 mm² isolamento elettrovetro elettrovetro/schermo	С
Sezione 2x0.22 mm² isolamento teflon estruso/schermo/teflon estruso	D
Sezione 2x0.25 mm² isolamento elettrovetro/elettrovetro/schermo	Е
Sezione 2x0.19 mm² isolamento teflon nastrato/teflon nastrato	F
Sezione 2x0.19 mm² isolamento vetro silicone/vetro silicone	G
Sezione 2x0.24 mm² isolamento teflon estruso/teflon estruso/schermo	Н
Sezione 2x0.50 mm² isolamento vetro silicone/vetro silicone/schermo	T
Sezione 2x0.50 mm² isolamento pvc/pvc	L
Sezione 2x0.24 mm² isolamento teflon/schermo/teflon	M
Sezione 2x0.35 mm² isolamento teflon/teflon	N
Sezione 2x0.19 mm² isolamento teflon/schermo/teflon	0
Sezione 2x0.35 mm² isolamento teflon/schermo/teflon	Р
Sezione 2x 0.24 mm² isolamento gomma silicone/gomma silicone	Q
Sezione 2x0.19 mm² isolamento teflon/teflon	R

DATI TECNICI

- Temperatura di funzionamento: in funzione del diametro e del tipo di termocoppia (verificare le specifiche nelle note tecniche)
- Precisione: secondo ANSI MC96.1/IEC 584
- · Raggio di curvatura, tre volte il diametro
- Massima temperatura di ultilizzo del cavo: in funzione del tipo di isolamento (verificare le specifiche nella sezione cavi)
- Temperatura massima sul transition 250 °C


COLLEGAMENTI ELETTRICI

Fili liberi, rispettare la polarità durante il collegamento (verificare nella tabella dei codici colori)

TERMOCOPPIE SERIE OSSIDO MINERALE (MgO) con cavo di estensione

CON RACCORDO FISSO

TIPO E CLASSE DI TOLLERANZA

TIPO DI CAVO

TIPO DI GIUNTO

QUALITÀ GUAINA

LUNGHEZZA L IN mm

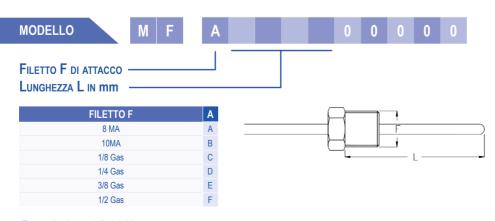
LUNGHEZZA L 1 IN dm (CAVO DI ESTENSIONE)

TIPO E CLASSE DI TOLLERANZA Ε Termocoppie, tolleranza Gr I K Norme Ansi S R R 1 Termocoppie, tolleranza Gr II Norme Ansi S 6 7 TIPI DI GIUNTO Isolato da massa A massa M

Esposto

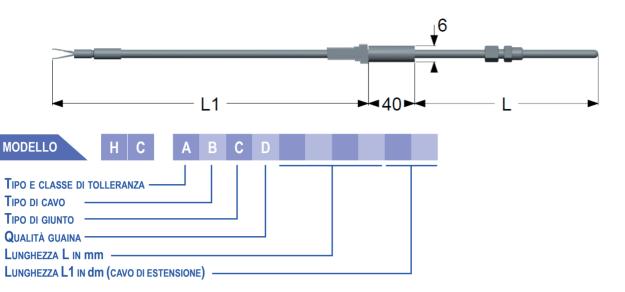
TIPI DI CAVO	В
Sezione 2x 0.24 mm² isolamento pvc/schermo/pvc	Α
Sezione 2x0.22 mm² isolamento teflon nastrato schermo/teflon nastrato	В
Sezione 2x0.25 mm² isolamento elettrovetro elettrovetro/schermo	С
Sezione 2x0.22 mm² isolamento teflon estruso/schermo/teflon estruso	D
Sezione 2x0.25 mm² isolamento elettrovetro/elettrovetro/schermo	Е
Sezione 2x0.19 mm² isolamento teflon nastrato/teflon nastrato	F
Sezione 2x0.19 mm² isolamento vetro silicone/vetro silicone	G
Sezione 2x0.24 mm² isolamento teflon estruso/teflon estruso/schermo	Н
Sezione 2x0.50 mm² isolamento vetro silicone/vetro silicone/schermo	1
Sezione 2x0.50 mm² isolamento pvc/pvc	L
Sezione 2x0.24 mm² isolamento teflon/schermo/teflon	M
Sezione 2x0.35 mm² isolamento teflon/teflon	N
Sezione 2x0.19 mm² isolamento teflon/schermo/teflon	0
Sezione 2x0.35 mm² isolamento teflon/schermo/teflon	Р
Sezione 2x 0.24 mm² isolamento gomma silicone/gomma silicone	Q
Sezione 2x0.19 mm² isolamento teflon/teflon	R

DATI TECNICI


- Temperatura di funzionamento: in funzione del diametro e del tipo di termocoppia (verificare le specifiche nelle note tecniche)
- Precisione: secondo ANSI MC96.1/IEC 584
- Raggio di curvatura, tre volte il diametro
- Massima temperatura di ultilizzo del cavo: in funzione del tipo di isolamento (verificare le specifiche nella sezione cavi)
- Temperatura massima sul transition 250 °C

QUALITÀ GUAINA							D		
	Diametro guaina (mm)								
	1	1.5	2	3	3.17	4	4.5	6	8
Aisi 304	Α	В	D	Ε	F	G	Н	4	
Aisi 316	K	J	L	M	N	0	Р	5	
Inconel 600	Q	R	Т	U	W	Z	Χ	6	8

COLLEGAMENTI ELETTRICI


Fili liberi, rispettare la polarità durante il collegamento (verificare nella tabella dei codici colori)

TERMOCOPPIE SERIE OSSIDO MINERALE (MgO) con cavo di estensione

CON RACCORDO SCORREVOLE

TIPO E CLASSE DI TOLLERANZA		Α
	Т	Т
Termocoppie, tolleranza Gr I Norme Ansi	J	J
	Е	Е
	K	K
	N	N
	S	S
	R	R
	Т	1
	J	2
	K	3
Termocoppie, tolleranza Gr II Norme Ansi	Е	4
Norme Ansi	N	5
	S	6
	R	7

TIPI DI GIUNTO									С
Isolato da massa									1
		Am	assa						М
		Esp	osto						Е
QUALITÀ GUAINA									_
	QUA	LIIA	GU	AIN.	A				D
			Dia	metr	o guai	na (r	nm)		
	1	1.5	2	3	3.17	4	4.5	6	8
Aisi 304	Α	В	D	Е	F	G	Н	4	
Aisi 316	K	K J L M N O P 5							
Inconel 600	Q	R	Т	U	W	Z	Χ	6	8

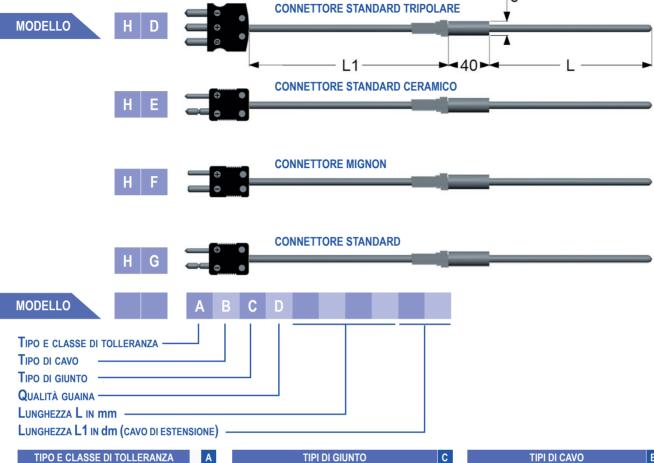
TIPI DI CAVO	В
Sezione 2x 0.24 mm² isolamento pvc/schermo/pvc	A
Sezione 2x0.22 mm² isolamento teflon nastrato schermo/teflon nastrato	В
Sezione 2x0.25 mm² isolamento elettrovetro elettrovetro/schermo	С
Sezione 2x0.22 mm² isolamento teflon estruso/schermo/teflon estruso	D
Sezione 2x0.25 mm² isolamento elettrovetro/elettrovetro/schermo	Е
Sezione 2x0.19 mm² isolamento teflon nastrato/teflon nastrato	F
Sezione 2x0.19 mm² isolamento vetro silicone/vetro silicone	G
Sezione 2x0.24 mm² isolamento teflon estruso/teflon estruso/schermo	Н
Sezione 2x0.50 mm² isolamento vetro silicone/vetro silicone/schermo	1
Sezione 2x0.50 mm² isolamento pvc/pvc	L
Sezione 2x0.24 mm² isolamento teflon/schermo/teflon	M
Sezione 2x0.35 mm² isolamento teflon/teflon	N
Sezione 2x0.19 mm² isolamento teflon/schermo/teflon	0
Sezione 2x0.35 mm² isolamento teflon/schermo/teflon	Р
Sezione 2x 0.24 mm² isolamento gomma silicone/gomma silicone	Q
Sezione 2x0.19 mm² isolamento teflon/teflon	R

DATI TECNICI

- Temperatura di funzionamento: in funzione del diametro e del tipo di termocoppia (verificare le specifiche nelle note tecniche)
- Precisione: secondo ANSI MC96.1/IEC 584
- Raggio di curvatura, tre volte il diametro
- Massima temperatura di ultilizzo del cavo: in funzione del tipo di isolamento (verificare le specifiche nella sezione cavi)
- Temperatura massima sul transition 250 °C

COLLEGAMENTI ELETTRICI

Fili liberi, rispettare la polarità durante il collegamento (verificare nella tabella dei codici colori)



Raccordo scorrevole pag. 79

SERIE OSSIDO MINERALE (MgO) con cavo di estensione

CON CONNETTORE COMPENSATO

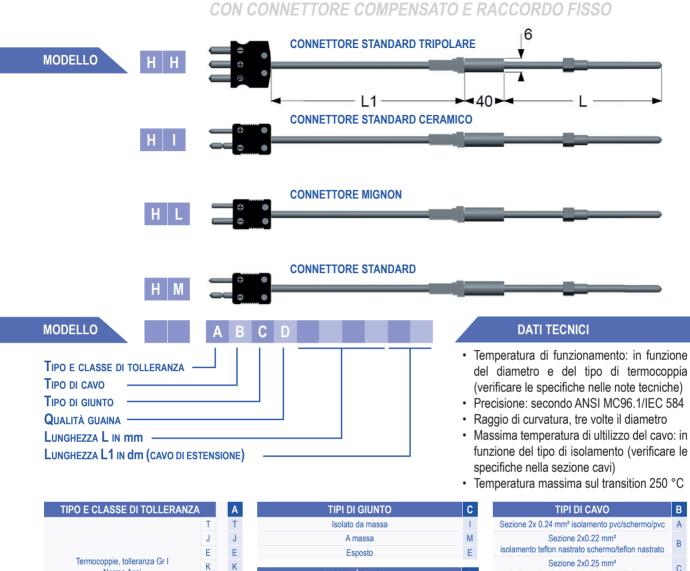
TIPO E CLASSE DI TOLLERANZA		Α
	Т	Т
Termocoppie, tolleranza Gr I Norme Ansi	J	J
	Е	Е
	K	K
	N	N
	S	S
	R	R
	Т	1
	J	2
	K	3
Termocoppie, tolleranza Gr II Norme Ansi	Е	4
Norme Arisi	N	5
	S	6
	R	7

TIPI DI GIUNTO									
Isolato da massa									
	A m	assa						М	
	Esp	osto						Е	
QUALITÀ GUAINA									
	Diametro guaina (mm)								
1	1.5	2	3	3.17	4	4.5	6	8	
Α	В	D	Ε	F	G	Н	4		
K	J	L	M	N	0	Р	5		
Q	R	Т	U	W	Ζ	Χ	6	8	
	QUA 1 A K	Isolato d A m Esp QUALITÀ 1 1.5 A B K J	A massa Esposto QUALITÀ GU Dia 1 1.5 2 A B D K J L	Isolato da massa A massa Esposto QUALITÀ GUAIN Diametr 1 1.5 2 3 A B D E K J L M	Isolato da massa A massa Esposto QUALITÀ GUAINA Diametro guai 1 1.5 2 3 3.17 A B D E F K J L M N	Isolato da massa	Isolato da massa	Isolato da massa	

	_
Sezione 2x 0.24 mm² isolamento pvc/schermo/pvc	Α
Sezione 2x0.22 mm² isolamento teflon nastrato schermo/teflon nastrato	В
Sezione 2x0.25 mm² isolamento elettrovetro elettrovetro/schermo	С
Sezione 2x0.22 mm² isolamento teflon estruso/schermo/teflon estruso	D
Sezione 2x0.25 mm² isolamento elettrovetro/elettrovetro/schermo	Е
Sezione 2x0.19 mm² isolamento teflon nastrato/teflon nastrato	F
Sezione 2x0.19 mm² isolamento vetro silicone/vetro silicone	G
Sezione 2x0.24 mm² isolamento teflon estruso/teflon estruso/schermo	Н
Sezione 2x0.50 mm² isolamento vetro silicone/vetro silicone/schermo	1
Sezione 2x0.50 mm² isolamento pvc/pvc	L
Sezione 2x0.24 mm² isolamento teflon/schermo/teflon	M
Sezione 2x0.35 mm² isolamento teflon/teflon	N
Sezione 2x0.19 mm² isolamento teflon/schermo/teflon	0
Sezione 2x0.35 mm² isolamento teflon/schermo/teflon	Р
Sezione 2x 0.24 mm² isolamento gomma silicone/gomma silicone	Q
Sezione 2x0.19 mm² isolamento teflon/teflon	R

DATI TECNICI

- Temperatura di funzionamento: in funzione del diametro e del tipo di termocoppia (verificare le specifiche nelle note tecniche)
- Precisione: secondo ANSI MC96.1/IEC 584
- Raggio di curvatura, tre volte il diametro
- Massima temperatura di ultilizzo del cavo: in funzione del tipo di isolamento (verificare le specifiche nella sezione cavi)
- Temperatura massima sul transition 250 °C

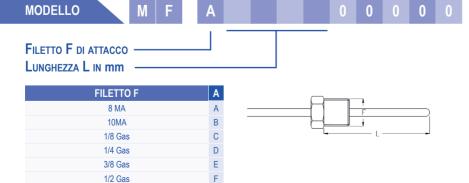

COLLEGAMENTI ELETTRICI

Secondo il modello di sensore (vedi prospetto)

TERMOTECNICA

TERMOCOPPIE

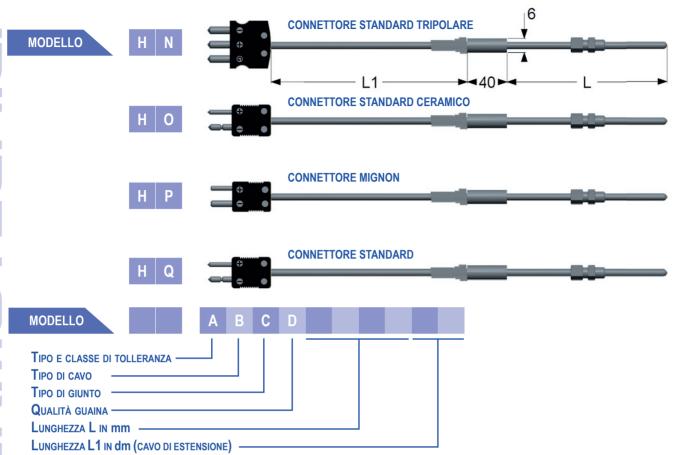
SERIE OSSIDO MINERALE (MgO) con cavo di estensione



TIPO E CLASSE DI TOLLERANZA	Α
Т	Т
J	J
Ε Ε	Ε
Termocoppie, tolleranza Gr I Norme Ansi	K
N N	Ν
S	S
R	R
T	1
J	2
_ K	3
Termocoppie, tolleranza Gr II Norme Ansi	4
Norme Arisi	5
S	6
R	7

TIPI DI GIUNTO									
Isolato da massa									
		A ma	assa						M
		Esp	osto						Е
	QUA	LITÀ	GU	AIN	A				D
			Dia	metro	o guai	na (r	nm)		
	1	1.5	2	3	3.17	4	4.5	6	8
Aisi 304	Α	В	D	Ε	F	G	Н	4	
Aisi 316	K	J	L	М	N	0	Р	5	
Inconel 600	Q	R	Т	U	W	Z	Χ	6	8

COLLEGAMENTI ELETTRICI


Secondo il modello di sensore (vedi prospetto)

TIPI DI CAVO	В
Sezione 2x 0.24 mm² isolamento pvc/schermo/pvc	Α
Sezione 2x0.22 mm² isolamento teflon nastrato schermo/teflon nastrato	В
Sezione 2x0.25 mm² isolamento elettrovetro elettrovetro/schermo	С
Sezione 2x0.22 mm² isolamento teflon estruso/schermo/teflon estruso	D
Sezione 2x0.25 mm² isolamento elettrovetro/elettrovetro/schermo	Е
Sezione 2x0.19 mm² isolamento teflon nastrato/teflon nastrato	F
Sezione 2x0.19 mm² isolamento vetro silicone/vetro silicone	G
Sezione 2x0.24 mm² isolamento teflon estruso/teflon estruso/schermo	Н
Sezione 2x0.50 mm² isolamento vetro silicone/vetro silicone/schermo	1
Sezione 2x0.50 mm² isolamento pvc/pvc	L
Sezione 2x0.24 mm² isolamento teflon/schermo/teflon	M
Sezione 2x0.35 mm² isolamento teflon/teflon	N
Sezione 2x0.19 mm² isolamento teflon/schermo/teflon	0
Sezione 2x0.35 mm² isolamento teflon/schermo/teflon	Р
Sezione 2x 0.24 mm² isolamento gomma silicone/gomma silicone	Q
Sezione 2x0.19 mm² isolamento teflon/teflon	R

SERIE OSSIDO MINERALE (MgO) con cavo di estensione

CON CONNETTORE COMPENSATO E RACCORDO SCORREVOLE

TIPO E CLASSE DI TOLLERANZA		Α
	Т	Т
Termocoppie, tolleranza Gr I Norme Ansi	J	J
	Е	Е
	K	K
	N	N
	S	S
	R	R
	Т	1
	J	2
	K	3
Termocoppie, tolleranza Gr II Norme Ansi	Е	4
Norme Ansi	N	5
	S	6
	R	7

TIPI DI GIUNTO									С
	Iso	lato d	la ma	issa					1
		A m	assa						M
		Esp	osto						Е
QUALITÀ GUAINA									D
	Diametro guaina (mm)								
	1	1.5	2	3	3.17	4	4.5	6	8
Aisi 304	Α	В	D	Е	F	G	Н	4	
Aisi 316	K	J	L	М	N	0	Р	5	
Inconel 600	Q	Q R T U W Z X 6							

Sezione 2x 0.24 mm² isolamento pvc/schermo/pvc	Α
Sezione 2x0.22 mm² isolamento teflon nastrato schermo/teflon nastrato	В
Sezione 2x0.25 mm² isolamento elettrovetro elettrovetro/schermo	С
Sezione 2x0.22 mm² isolamento teflon estruso/schermo/teflon estruso	D
Sezione 2x0.25 mm² isolamento elettrovetro/elettrovetro/schermo	Е
Sezione 2x0.19 mm² isolamento teflon nastrato/teflon nastrato	F
Sezione 2x0.19 mm² isolamento vetro silicone/vetro silicone	G
Sezione 2x0.24 mm² isolamento teflon estruso/teflon estruso/schermo	Н
Sezione 2x0.50 mm² isolamento vetro silicone/vetro silicone/schermo	1
Sezione 2x0.50 mm² isolamento pvc/pvc	L
Sezione 2x0.24 mm² isolamento teflon/schermo/teflon	M
Sezione 2x0.35 mm² isolamento teflon/teflon	N
Sezione 2x0.19 mm² isolamento teflon/schermo/teflon	0
Sezione 2x0.35 mm² isolamento teflon/schermo/teflon	Р
Sezione 2x 0.24 mm² isolamento gomma silicone/gomma silicone	Q
Sezione 2x0.19 mm² isolamento teflon/teflon	R

TIPI DI CAVO

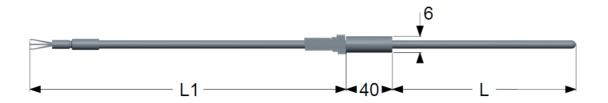
DATI TECNICI

- Temperatura di funzionamento: in funzione del diametro e del tipo di termocoppia (verificare le specifiche nelle note tecniche)
- Precisione: secondo ANSI MC96.1/IEC 584
- Raggio di curvatura, tre volte il diametro
- Massima temperatura di ultilizzo del cavo: in funzione del tipo di isolamento (verificare le specifiche nella sezione cavi)
- Temperatura massima sul transition 250 °C

COLLEGAMENTI ELETTRICI

Secondo il modello di sensore (vedi prospetto)

Esecuzioni speciali a richiesta


Raccordo scorrevole pag. 79

FRMOTECNICA

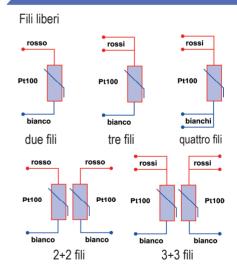
TERMORESISTENZE

LISCE

MODELLO H R A B C D TIPO E CLASSE DI TOLLERANZA TIPO DI CAVO COLLEGAMENTO TERMORESISTENZA QUALITÀ GUAINA LUNGHEZZA L IN mm LUNGHEZZA L1 IN dm (CAVO DI ESTENSIONE)

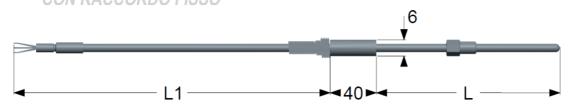
TIPO E CLASSE DI TOLLERANZA		Α
	Т	Т
Termocoppie, tolleranza Gr I	J	J
Norme Ansi	Е	Е
	K	K
	Т	1
Termocoppie, tolleranza Gr II	J	2
Norme Ansi	Е	3
	K	4
Termoresistenza pt100 OHM a 0 °C 1 DIN		Α
Termoresistenza pt100 OHM a 0 °C 1/2 DIN		В
Termoresistenza pt100 OHM a 0 °C 1/3 DIN		С
Termoresistenza pt100 OHM a 0 °C 1/5 DIN		D
Termoresistenza pt100 OHM a 0 °C 1/10D	IN	Е

TIPI DI CAVO	В
TIPI DI CAVO	ь
2x0.24 mm² isolamento pvc/schermo/pvc	Α
2x0.24 mm² isolamento gomma silicone/gomma silicone	В
2x0.25 mm² isolamento vetro silicone/vetro silicone/schermo	С
2x0.22 mm² isolamento teflon estruso/teflon estruso	D
2x0.24 mm² isolamento teflon/teflon/schermo conduttore in rame stagnato	Е
2x0.22 mm² isoalmento teflon/schermo/teflon	F
2x0.35 mm² isolamento vetro silicone/vetro silicone/schermo	G
2x0.35 mm² isolamento vetro silicone/vetro silicone	Н


1 pt 100 a 2 fili	1
1 pt 100 a 3 fili	2
1 pt 100 a 4 fili	3
2 pt 100 a 2 fili	4
2 pt 100 a 3 fili	5
DIAMETRO GUAINA (mm)	D
DIAMETRO GUAINA (mm)	D
	D 8 1
2	8 1 2
2 3	1

COLLEGAMENTO TERMORESISTENZE C

DATI TECNICI


- Temperatura di funzionamento: -80 .. 500 °C
- Precisione: secondo IEC 751
- Raggio di curvatura, tre volte il diametro, nella zona sensibile (50 mm dalla estremità) non è possibile piegare la guaina.
- Massima temperatura di ultilizzo del cavo: in funzione del tipo di isolamento (verificare le specifiche nella sezione cavi)
- Temperatura massima sul transition 250 °C

COLLEGAMENTI ELETTRICI

TERMORESISTENZE

SERIE OSSIDO MINERALE (MgO) con cavo di este

MODELLO

H S A B C I

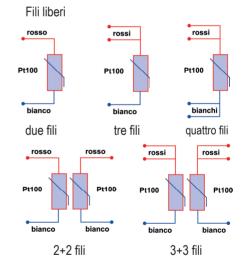
TIPO E CLASSE DI TOLLERANZA — TIPO DI CAVO — COLLEGAMENTO TERMORESISTENZA —

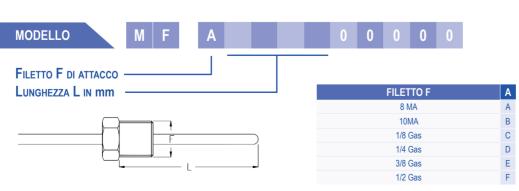
QUALITÀ GUAINA —— LUNGHEZZA L IN MM

LUNGHEZZA L1 IN dm (CAVO DI ESTENSIONE)

TIPO E CLASSE DI TOLLERANZA		Α
	Т	Т
Termocoppie, tolleranza Gr I	J	J
Norme Ansi	Е	Е
	K	K
Termocoppie, tolleranza Gr II Norme Ansi	Т	1
	J	2
	Е	3
	K	4
Termoresistenza pt100 OHM a 0 °C 1 DIN		Α
Termoresistenza pt100 OHM a 0 °C 1/2 DIN		В
Termoresistenza pt100 OHM a 0 °C 1/3 DIN		С
Termoresistenza pt100 OHM a 0 °C 1/5 DIN		D
Termoresistenza pt100 OHM a 0 °C 1/10D	IN	Е

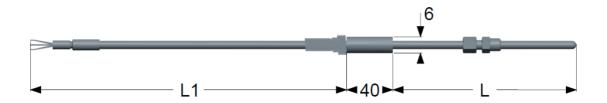
TIPI DI CAVO	В
2x0.24 mm² isolamento pvc/schermo/pvc	Α
2x0.24 mm² isolamento gomma silicone/gomma silicone	В
2x0.25 mm² isolamento vetro silicone/vetro silicone/schermo	С
2x0.22 mm² isolamento teflon estruso/teflon estruso	D
2x0.24 mm² isolamento teflon/teflon/schermo conduttore in rame stagnato	Е
2x0.22 mm² isoalmento teflon/schermo/teflon	F
2x0.35 mm² isolamento vetro silicone/vetro silicone/schermo	G
2x0.35 mm² isolamento vetro silicone/vetro silicone	Н


COLLEGAMENTO TERMORESISTENZE	С
1 pt 100 a 2 fili	1
1 pt 100 a 3 fili	2
1 pt 100 a 4 fili	3
2 pt 100 a 2 fili	4
2 pt 100 a 3 fili	5
	_
DIAMETRO GUAINA (mm)	D
•	_


= pt 100 0 0 m	-
DIAMETRO GUAINA (mm)	D
2	8
3	1
3.17	2
4	5
4.5	3
6	4

DATI TECNICI

- Temperatura di funzionamento: -80 .. 500 °C
- Precisione: secondo IEC 751
- Raggio di curvatura, tre volte il diametro, nella zona sensibile (50 mm dalla estremità) non è possibile piegare la guaina.
- Massima temperatura di ultilizzo del cavo: in funzione del tipo di isolamento (verificare le specifiche nella sezione cavi)
- Temperatura massima sul transition 250 °C

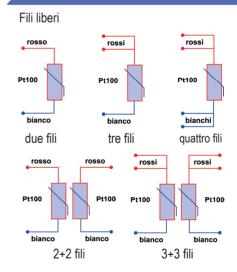

COLLEGAMENTI ELETTRICI

TERMORESISTENZE RIE OSSIDO MINERALE (MgO) con cavo di estensione

CON RACCORDO SCORREVOLE

MODELLO H T A B C D TIPO E CLASSE DI TOLLERANZA TIPO DI CAVO COLLEGAMENTO TERMORESISTENZA QUALITÀ GUAINA LUNGHEZZA L IN mm LUNGHEZZA L1 IN dm (CAVO DI ESTENSIONE)

TIPO E CLASSE DI TOLLERANZA		Α
	Т	Т
Termocoppie, tolleranza Gr I	J	J
Norme Ansi	Е	Е
	K	K
Termocoppie, tolleranza Gr II Norme Ansi	Т	1
	J	2
	Е	3
	K	4
Termoresistenza pt100 OHM a 0 °C 1 DIN		Α
Termoresistenza pt100 OHM a 0 °C 1/2 DIN		В
Termoresistenza pt100 OHM a 0 °C 1/3 DIN		С
Termoresistenza pt100 OHM a 0 °C 1/5 DIN		D
Termoresistenza pt100 OHM a 0 °C 1/10D	IN	Е

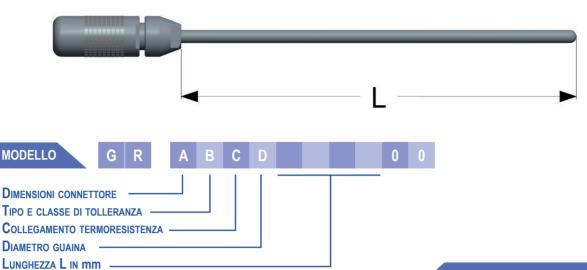

TIPI DI CAVO	В
2x0.24 mm² isolamento pvc/schermo/pvc	Α
2x0.24 mm² isolamento gomma silicone/gomma silicone	В
2x0.25 mm² isolamento vetro silicone/vetro silicone/schermo	С
2x0.22 mm² isolamento teflon estruso/teflon estruso	D
2x0.24 mm² isolamento teflon/teflon/schermo conduttore in rame stagnato	Е
2x0.22 mm² isoalmento teflon/schermo/teflon	F
2x0.35 mm² isolamento vetro silicone/vetro silicone/schermo	G
2x0.35 mm² isolamento vetro silicone/vetro silicone	Н

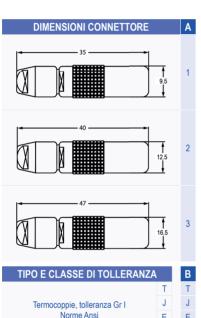
COLLEGAMENTO TERMORESISTENZE	U
1 pt 100 a 2 fili	1
1 pt 100 a 3 fili	2
1 pt 100 a 4 fili	3
2 pt 100 a 2 fili	4
2 pt 100 a 3 fili	5
DIAMETRO GUAINA (mm)	D
DIAMETRO GUAINA (mm) 2	D
, ,	D 8 1
2	
2 3	1
2 3 3.17	1 2

DATI TECNICI

- Temperatura di funzionamento: -80 .. 500 °C
- Precisione: secondo IEC 751
- Raggio di curvatura, tre volte il diametro, nella zona sensibile (50 mm dalla estremita') non e' possibile piegare la guaina.
- Massima temperatura di ultilizzo del cavo: in funzione del tipo di isolamento (verificare le specifiche nella sezione cavi)
- Temperatura massima sul transition 250 °C

COLLEGAMENTI ELETTRICI



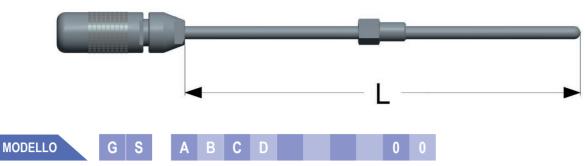

Raccordo scorrevole pag. 79

TERMORESISTENZE SERIE OSSIDO MINERALE (MgO) e connettore

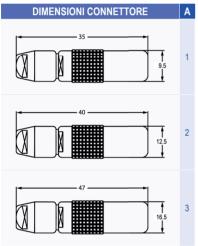
LISCE

COLLEGAMENTO TERMORESISTENZE	С
1 pt 100 a 2 fili	1
1 pt 100 a 3 fili	2
1 pt 100 a 4 fili	3
2 pt 100 a 2 fili	4
2 pt 100 a 3 fili	5
DIAMETRO GUAINA (mm)	D
2	8
3	1
3.17	2
3.17	_
4	5
•	_
4	5

DATI TECNICI


- Temperatura di funzionamento: -80 .. 500 °C
- Precisione: secondo IEC 751
- Raggio di curvatura, tre volte il diametro, nella zona sensibile (50 mm dalla estremità) non è possibile piegare la guaina.
- Temperatura massima sul connettore 250 °C

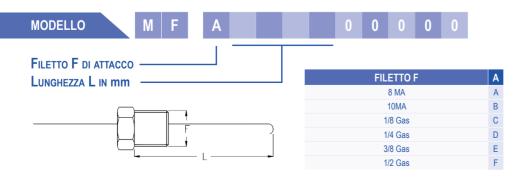
COLLEGAMENTI ELETTRICI


Connettore modello PHG LEMO

TERMORESISTENZE SERIE OSSIDO MINERALE (MgO) e connettore LEMO

CON RACCORDO FISSO

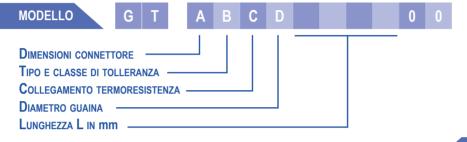
DIMENSIONI CONNETTORE
TIPO E CLASSE DI TOLLERANZA
COLLEGAMENTO TERMORESISTENZA
DIAMETRO GUAINA
LUNGHEZZA L IN MM

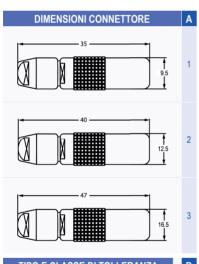

COLLEGAMENTO TERMORESISTENZE	С
1 pt 100 a 2 fili	1
1 pt 100 a 3 fili	2
1 pt 100 a 4 fili	3
2 pt 100 a 2 fili	4
2 pt 100 a 3 fili	5
DIAMETRO CHADIA ()	
DIAMETRO GUAINA (mm)	D
DIAMETRO GUAINA (mm) 2	8
· · · · · · · · · · · · · · · · · · ·	8 1
2	
2 3	1
2 3 3.17	1 2
2 3 3.17 4	1 2 5

DATI TECNICI

- Temperatura di funzionamento: -80 .. 500 °C
- Precisione: secondo IEC 751
- Raggio di curvatura, tre volte il diametro, nella zona sensibile (50 mm dalla estremità) non è possibile piegare la guaina.
- Temperatura massima sul connettore 250 °C

COLLEGAMENTI ELETTRICI


Connettore modello PHG LEMO



TERMORESISTENZE SERIE OSSIDO MINERALE (MgO) e connettore LEMO

CON RACCORDO SCORREVOLE

TIPO E CLASSE DI TOLLERANZA						
	Т	Т				
Termocoppie, tolleranza Gr I	J	J				
Norme Ansi	Е	Е				
	K	K				
	Т	1				
Termocoppie, tolleranza Gr II	J	2				
Norme Ansi	Е	3				
	K	4				
Termoresistenza pt100 OHM a 0 °C 1 DII	٧	Α				
Termoresistenza pt100 OHM a 0 °C 1/2 DIN						
Termoresistenza pt100 OHM a 0 °C 1/3 DIN						
Termoresistenza pt100 OHM a 0 °C 1/5 DIN						
Termoresistenza pt100 OHM a 0 °C 1/10D	IN	Е				

COLLEGAMENTO TERMORESISTENZE	C
1 pt 100 a 2 fili	1
1 pt 100 a 3 fili	2
1 pt 100 a 4 fili	3
2 pt 100 a 2 fili	4
2 pt 100 a 3 fili	5
DIAMETRO GUAINA (mm)	D
DIAMETRO GUAINA (mm) 2	D
, ,	D 8 1
2	
2 3	1
2 3 3.17	1 2

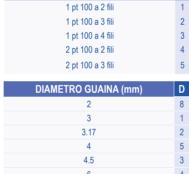
DATI TECNICI

- Temperatura di funzionamento: -80 .. 500 °C
- Precisione: secondo IEC 751
- Raggio di curvatura, tre volte il diametro, nella zona sensibile (50 mm dalla estremità) non è possibile piegare la guaina.
- Temperatura massima sul connettore 250 °C


COLLEGAMENTI ELETTRICI

Connettore modello PHG LEMO

Raccordo scorrevole pag. 79



TERMORESISTENZE SERIE OSSIDO MINERALE (MgO) e connettore AMPHENOI

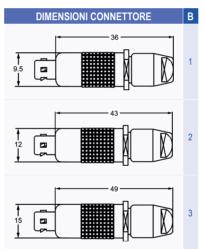
MODELLO H U A B C D 0 0 DIMENSIONI CONNETTORE TIPO E CLASSE DI TOLLERANZA COLLEGAMENTO TERMORESISTENZA DIAMETRO GUAINA LUNGHEZZA L IN mm

COLLEGAMENTO TERMORESISTENZE C

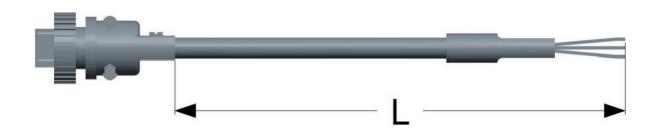
DATI TECNICI

- Temperatura di funzionamento: -80 .. 500 °C
- Precisione: secondo IEC 751
- Raggio di curvatura, tre volte il diametro, nella zona sensibile (50 mm dalla estremità) non è possibile piegare la guaina.
- Temperatura massima sul connettore 200 °C

COLLEGAMENTI ELETTRICI


Connettore modello JMR13 Amphenol

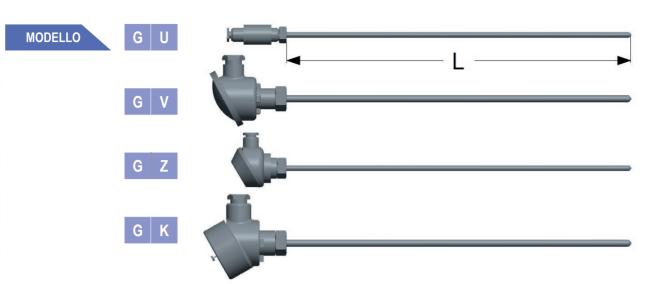
TIPO E CLASSE DI TOLLERANZA	\	В
	Т	Т
Termocoppie, tolleranza Gr I Norme Ansi	J	J
	Е	Е
	K	K
	Т	1
Termocoppie, tolleranza Gr II	J	2
Norme Ansi	Е	3
	K	4
Termoresistenza pt100 OHM a 0 °C 1 DI	N	Α
Termoresistenza pt100 OHM a 0 °C 1/2 D	IN	В
Termoresistenza pt100 OHM a 0 °C 1/3 D	IN	С
Termoresistenza pt100 OHM a 0 °C 1/5 D	IN	D
Termoresistenza pt100 OHM a 0 °C 1/10E	OIN	Е


MODELLO	Н	٧	Α		В	0	0	0	0	0
TIPO DI CAVO LUNGHEZZA L IN dm DIMENSIONI CONNETTI										

DATI TECNICI

- Temperatura di funzionamento: cavo con isolamento in PVC 105 °C / cavo con isolamento in gomma 180 °C / cavo con isolamento in elettrovetro 400 °C
- Temperatura massima sul connettore 100 °C

MODELLO	Н	Z	۱ ۱		В	0	0	0	0	0
TIPO DI CAVO LUNGHEZZA L IN dm DIMENSIONI CONNETT				J						


TIPI DI CAVO		Α			
2x0.24 mm² isolamento pvc/schermo/pvc					
2x0.24 mm² isolamento gomma silicone/go	omma silicone	В			
2x0.25 mm² isolamento vetro silicon silicone/schermo		С			
DIMENSIONI CONNE	TTORE	В			
46.5	A=12.7	1			
26.5	A=12.7	2			
49.3	A=12.7	3			
41	A=12.7	4			

DATI TECNICI

- Temperatura di funzionamento: cavo con isolamento in PVC 105 °C / cavo con isolamento in gomma 180 °C / cavo con isolamento in elettrovetro 400 °C
- Temperatura massima sul connettore 100 °C

SERIE OSSIDO MINERALE (MgO) con testina di connessione

LISCE

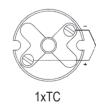
MODELLO A B C 0 0

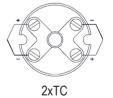
TIPO E CLASSE DI TOLLERANZA –
TIPO DI GIUNTO

QUALITÀ GUAINA

LUNGHEZZA L IN mm

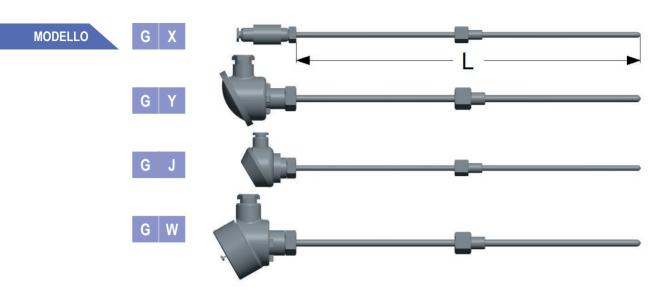
TIPO E CLASSE DI TOLLERANZA		Α
	Т	Т
Termocoppie, tolleranza Gr I Norme Ansi	J	J
	Е	Е
	K	K
	N	N
	Т	1
	J	2
Termocoppie, tolleranza Gr II Norme Ansi	Е	3
TOTALO PAIGI	K	4
	N	5


		Α	mass	а	Espo	sto		
Isolato			1		6			
A massa	A massa				7			
Esposto	Esposto				8			
QUALITÀ GUAINA C								
	Diametro guaina (mm)							
		Diam	etro g	uaina	(mm)			
	3	3.17	etro g 4	uaina 4.5	(mm) 6	8		
Aisi 304	3 B					8		
Aisi 304 Aisi 316	-	3.17	4	4.5	6			
	В	3.17	4 D	4.5 E	6 G	1		


TIPI DI GIUNTO

DATI TECNICI

- Temperatura di funzionamento: in funzione del diametro e del tipo di termocoppia (verificare le specifiche nelle note tecniche)
- Precisione: secondo ANSI MC96.1/IEC 584
- · Raggio di curvatura, tre volte il diametro
- Grado di protezione: IP55
- Connessioni elettriche 1/2" gas


COLLEGAMENTI ELETTRICI

SERIE OSSIDO MINERALE (MgO) con testina di connessione

CON RACCORDO FISSO

MODELLO A B C 0

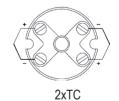
TIPO E CLASSE DI TOLLERANZA — IPO DI GIUNTO — QUALITÀ GUAINA

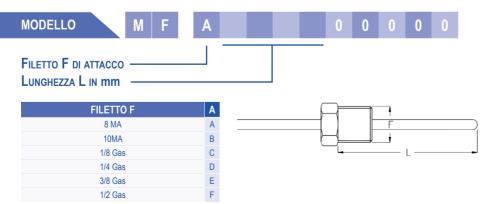
TIPO E CLASSE DI TOLLERANZA		Α
	Т	Т
Termocoppie, tolleranza Gr I Norme Ansi	J	J
	Е	Е
	K	K
	N	N
	Т	1
	J	2
Termocoppie, tolleranza Gr II Norme Ansi	Е	3
Norme Ansi	K	4
	N	5

LUNGHEZZA L IN mm

Isolato			1		6		
A massa			2		7		
Esposto	Esposto				8		
QUALITÀ GUAINA							
	3	3.17	4	4.5	6	8	
Aisi 304	В	С	D	Е	G	1	
Aisi 316	J	-1	L	М	0	2	
Inconel 600	R	S	Т	U	Z	3	
Aisi 310	Р	Q	٧	W	4	5	

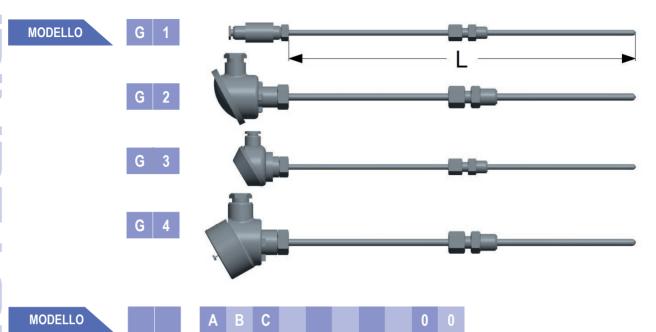
A massa


TIPI DI GIUNTO


DATI TECNICI

- Temperatura di funzionamento: in funzione del diametro e del tipo di termocoppia (verificare le specifiche nelle note tecniche)
- Precisione: secondo ANSI MC96.1/IEC 584
- · Raggio di curvatura, tre volte il diametro
- Grado di protezione: IP55
- Connessioni elettriche 1/2" gas

COLLEGAMENTI ELETTRICI



SERIE OSSIDO MINERALE (MgO) con testina di connessione

CON RACCORDO SCORREVOLE

TIPO E CLASSE DI TOLLERANZA -

TIPO DI GIUNTO

QUALITÀ GUAINA -

LUNGHEZZA L IN mm

Isolato			1		6		
A massa			2		7		
Esposto			3		8		
QUALIT	À GL	JAIN	4			С	
		Diam	etro g	uaina	(mm)		
	3	3.17	4	4.5	6	8	
Aisi 304	В	С	D	Е	G	1	
Aisi 316	J	-1	L	M	0	2	
Inconel 600	R	S	Т	U	Z	3	
Aisi 310	Р	Q	٧	W	4	5	

A massa

Esposto


TIPI DI GIUNTO

DATI TECNICI

- Temperatura di funzionamento: in funzione del diametro e del tipo di termocoppia (verificare le specifiche nelle note tecniche)
- Precisione: secondo ANSI MC96.1/IEC
 584
- · Raggio di curvatura, tre volte il diametro
- Grado di protezione: IP55
- Connessioni elettriche 1/2" gas

COLLEGAMENTI ELETTRICI

Raccordo scorrevole pag. 79

TERMORESISTENZE

SERIE OSSIDO MINERALE (MgO) con testina di connessione

LISCE

MODELLO A B C 0 0

TIPO E CLASSE DI TOLLERANZA -

TIPO DI GIUNTO -

QUALITÀ GUAINA -

LUNGHEZZA L IN mm-

TIPO E CLASSE DI TOLLERANZA						
	Т		Т			
Termocoppie, tolleranza Gr I	J		J			
Norme Ansi	Е		Е			
	K		K			
	Т		1			
Termocoppie, tolleranza Gr II	J		2			
Norme Ansi	Е		3			
	K		4			
Termoresistenza pt100 OHM a 0 °C 1 DI	N		Α			
Termoresistenza pt100 OHM a 0 °C 1/2 D	IN		В			
Termoresistenza pt100 OHM a 0 °C 1/3 DIN						
Termoresistenza pt100 OHM a 0 °C 1/5 D	IN		D			
Termoresistenza pt100 OHM a 0 °C 1/10D	IN		Е			

COLLEGAMENTO TERMORESISTENZE	В
1 pt 100 a 2 fili	1
1 pt 100 a 3 fili	2
1 pt 100 a 4 fili	3
2 pt 100 a 2 fili	4
2 pt 100 a 3 fili	5

QUALITÀ GU	AINA			С
	Diar	Diametro guaina (
	3	3.17	4.5	6
Aisi 304	1	2	3	4

DATI TECNICI

- Temperatura di funzionamento: -50...+500 °C
- Precisione: secondo IEC 751
- Raggio di curvatura, tre volte il diametro
- Grado di protezione: IP55
- Connessioni elettriche 1/2" gas

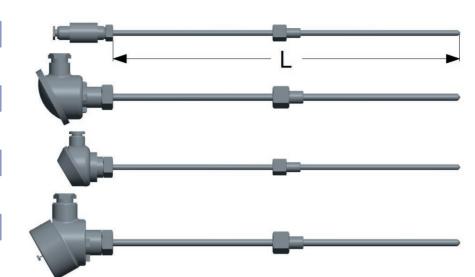
COLLEGAMENTI ELETTRICI

1xPT100 3 fili

1xPT100 4 fili

2xPT100 3+3 fili

CON RACCORDO FISSO



MODELLO

J

Ε

TIPO E CLASSE DI TOLLERANZA

TIPO DI GIUNTO

QUALITÀ GUAINA -

LUNGHEZZA L IN mm

DATI TECNICI

- Temperatura di funzionamento: -50...+500 °C
- Precisione: secondo IEC 751
- Raggio di curvatura, tre volte il diametro
- Grado di protezione: IP55
- 1 2 3 4 Connessioni elettriche 1/2" gas

TIPO E CLASSE DI TOLLERANZA Termocoppie, tolleranza Gr I

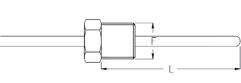
Norme Ansi

	K	k
Termocoppie, tolleranza Gr II	Т	1
	J	2
Norme Ansi	Е	3
	K	4
Termoresistenza pt100 OHM a 0 °C 1 DIN		F
Termoresistenza pt100 OHM a 0 °C 1/2 DIN		E
Termoresistenza pt100 OHM a 0 °C 1/3 DIN		(
Termoresistenza pt100 OHM a 0 °C 1/5 DIN		
Termoresistenza pt100 OHM a 0 °C 1/10DIN		E
COLLEGAMENTO TERMORESISTE	NZE	E
1 pt 100 a 2 fili		1

COLLEGAMENTO TERMORESISTENZE	В
1 pt 100 a 2 fili	1
1 pt 100 a 3 fili	2
1 pt 100 a 4 fili	3
2 pt 100 a 2 fili	4
2 pt 100 a 3 fili	5

QUALITÀ GUAINA Diametro guaina (mm) 3 3.17 4.5 6 Aisi 304

COLLEGAMENTI ELETTRICI

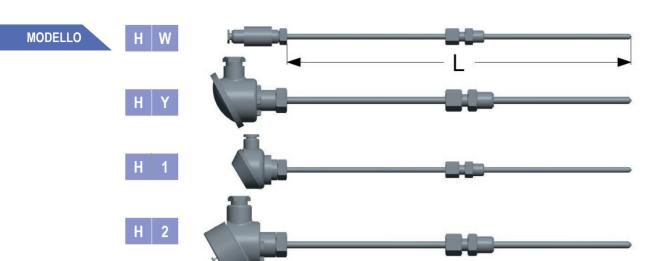

1xPT100 3 fili

1xPT100 4 fili

2xPT100 3+3 fili

MODELLO

FILETTO F DI ATTACCO LUNGHEZZA L IN mm



FILETTO F	Α
8 MA	Α
10MA	В
1/8 Gas	С
1/4 Gas	D
3/8 Gas	Е
1/2 Gas	F

TERMORESISTENZE

SERIE OSSIDO MINERALE (MgO) con testina di connessione

CON RACCORDO SCORREVOLE

MODELLO A B C 0 0

TIPO E CLASSE DI TOLLERANZA -

TIPO DI GIUNTO -

QUALITÀ GUAINA -

LUNGHEZZA L IN mm

TIPO E CLASSE DI TOLLERANZA		Α
	Т	Т
Termocoppie, tolleranza Gr I	J	J
Norme Ansi	Е	Е
	K	K
		1
Termocoppie, tolleranza Gr II	J	2
Norme Ansi	Е	3
	K	4
Termoresistenza pt100 OHM a 0 °C 1 DI	N	Α
Termoresistenza pt100 OHM a 0 °C 1/2 DIN		В
Termoresistenza pt100 OHM a 0 °C 1/3 DIN		С
Termoresistenza pt100 OHM a 0 °C 1/5 DIN		D
Termoresistenza pt100 OHM a 0 °C 1/10DIN		Е

COLLEGAMENTO TERMORESISTENZE	В
1 pt 100 a 2 fili	1
1 pt 100 a 3 fili	2
1 pt 100 a 4 fili	3
2 pt 100 a 2 fili	4
2 pt 100 a 3 fili	5

QUALITA GUA	AINA			С
	Diar	netro g	uaina (mm)
	3	3.17	4.5	6
Aisi 304	1	2	3	4

Raccordo scorrevole pag. 79

DATI TECNICI

- Temperatura di funzionamento: -50...+500 °C
- Precisione: secondo IEC 751
- Raggio di curvatura, tre volte il diametro
- Grado di protezione: IP55
- Connessioni elettriche 1/2" gas

COLLEGAMENTI ELETTRICI

1xPT100 3 fili

1xPT100 4 fili

2xPT100 3+3 fili

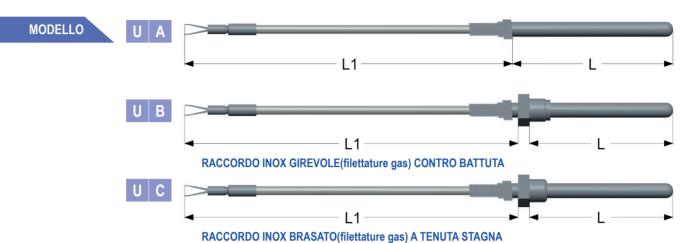
TERMOCOPPIE SERIE TUTTO CAVO

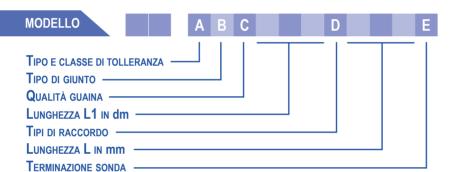
SERIE TUTTO CAVO

LA TERMOTECNICA ha sviluppato qualità, controlli ed esperienza grazie alla progettazione e produzione di centinaia di migliaia di sonde per l'industria plastica ed altre applicazioni per range di temperatura medio bassi 0..400 °C. Questo ci permette oggi di proporre una varietà elevatissima di sonde a termocoppia ed a termoresistenza.

- · Lunghezza delle guaine customizzata
- · Lunghezza del cavo customizzata
- Cavi isolati in: elettrovetro, teflon, pvc, gomma siliconica (con o senza schermatura)
- · Giunti di misura isolati o a massa
- Fissaggio a vite, fascetta, occhiello, baionetta, etc..
- Calibrazioni T K J E o Pt100, singolo o doppio elemento.
- Sono disponibili nelle seguenti versioni
- Termocoppie termoresistenze tutto cavo
- Termocoppie termoresistenze per aerotermia
- Termocoppie termoresistenze con attacchi a baionetta
- Microtermocoppie

In ragione della notevole varietà, questa serie di sonde copre applicazioni in molteplici settori industriali:


- Industria plastica
- · Macchinari di trattamento alimentare
- Riscaldamento civile ed industriali
- · Industria dell'imballaggio
- Refrigerazione e condizionamento
- Industria di processo
- Trattamento delle acque
- Apparati medicali
- E molti altri campi applicativi


TERMOCOPPIE SERIE TUTTO CAVO

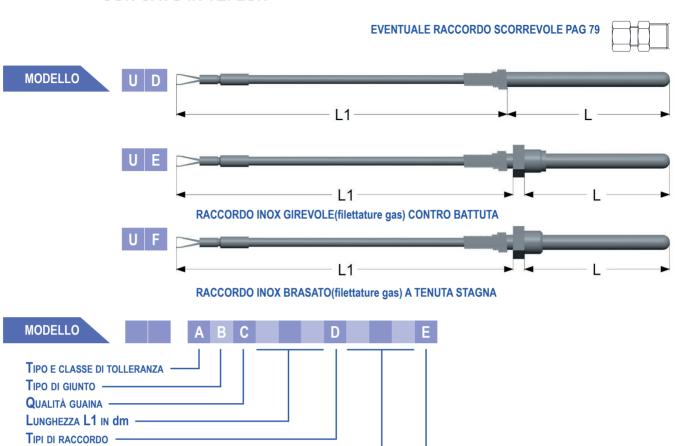
CON CAVO IN ELETTROVETRO

TIPO E CLASSE DI TOLLERANZA		Α
Tomorous de Honorous	Т	Т
Termocoppie,tolleranza Norme Ansi	J	J
140111074101	K	K
TT	Т	Α
TTermocoppie,tolleranza Norme Din	J	С
Normo Bill	K	F
TIPI DI GIUNTO		В
Isolato da massa		1
A massa		М
Esposto		Е
DIAMETRO SONDA (mm)		С
4 Aisi 304		4
5 Aisi 304		5
6 Aisi 316		6
8 Aisi 316		8

TIPI DI RACCORDO	D
Per sonda modello UA	
Senza raccordo	0
Raccordo a compressione in ottone nichelato filettatura gas 1/8	1
Raccordo a compressione in ottone nichelato filettatura gas 1/4	2
Raccordo a compressione in ottone nichelato filettatura gas 3/8	3
Per sonde modello UB-UC	
Raccordo inox filettatura 1/8 gas	1
Raccordo inox filettatura 1/4 gas	2
Raccordo inox filettatura 3/8 gas	3
Raccordo inox filettatura 1/2 gas	4
Raccordo inox filettatura 3/4 gas	5
Raccordo inox filettatura M8x1	6
TERMINAZIONE SONDA	Ε
Fili liberi	0
Connettore maschio standard volante	Α
Connettore femmina standard volante	В
Connettore maschio mignon volante	С
Connettore femmina mignon volante	D

DATI TECNICI

- Temperatura di funzionamento: -50 .. 400 °C
- Precisione: secondo ANSI MC96.1/IEC 584


COLLEGAMENTI ELETTRICI

Fili liberi, rispettare la polarità durante il collegamento (verificare nella tabella dei codici colori)

TERMOCOPPIE SERIE TUTTO CAVO

CON CAVO IN TEFLON

TIPO E CLASSE DI TOLLERANZA		Α
Towns and tallers are	Т	Т
Termocoppie,tolleranza Norme Ansi	J	J
Normo / dioi	K	K
- · · · · ·	Т	Α
Termocoppie,tolleranza Norme Din	J	С
Normo Em	K	F
TIPI DI GIUNTO		В
Isolato da massa		-
A massa		M
Esposto		Е
DIAMETRO SONDA (mm)		C
` ,		U
4 Aisi 304		4
5 Aisi 304		5
6 Aisi 316		6
8 Aisi 316		8

LUNGHEZZA L IN mm
TERMINAZIONE SONDA

TIPI DI RACCORDO	D
Per sonda modello UD	
Senza raccordo	0
Raccordo a compressione in ottone nichelato filettatura gas 1/8	1
Raccordo a compressione in ottone nichelato filettatura gas 1/4	2
Raccordo a compressione in ottone nichelato filettatura gas 3/8	3
Per sonde modello UE-UF	
Raccordo inox filettatura 1/8 gas	1
Raccordo inox filettatura 1/4 gas	2
Raccordo inox filettatura 3/8 gas	3
Raccordo inox filettatura 1/2 gas	4
Raccordo inox filettatura 3/4 gas	5
Raccordo inox filettatura M8x1	6
TERMINAZIONE SONDA	Е
Fili liberi	0
Connettore maschio standard volante	Α
Connettore femmina standard volante	В
Connettore maschio mignon volante	С
Connettore femmina mignon volante	D

DATI TECNICI

- Temperatura di funzionamento: -50 .. 250 °C
- Precisione: secondo ANSI MC96.1/IEC 584

COLLEGAMENTI ELETTRICI

Fili liberi, rispettare la polarità durante il collegamento (verificare nella tabella dei codici colori)

TERMOCOPPIE SERIE TUTTO CAVO

CON CAVO GOMMA SILICONE

MODELLO	A B	C		D	E
TIPO E CLASSE DI TOLLERANZA — TIPO DI GIUNTO — QUALITÀ GUAINA — LUNGHEZZA L 1 IN dm — TIPI DI RACCORDO — LUNGHEZZA L IN mm			Ī		
TERMINAZIONE SONDA					

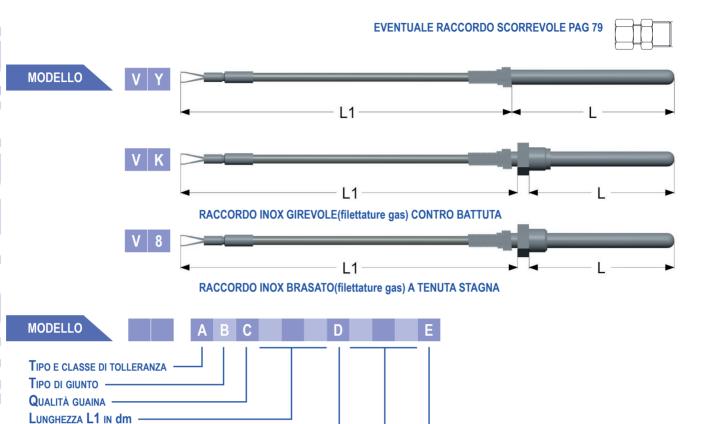
TIPO E CLASSE DI TOLLERANZA		Α
	Т	Т
Termocoppie,tolleranza Norme Ansi		J
74071107	K	K
- · · · · ·	Т	Α
Termocoppie,tolleranza Norme Din	J	С
Nome bill	K	F
TIPI DI GIUNTO		В
TIFI DI GIUNTO		ь
Isolato da massa		- 1
A massa		M
Esposto		Е
DIAMETRO SONDA (*****)		С
DIAMETRO SONDA (mm)		U
4 Aisi 304		4
5 Aisi 304		5
6 Aisi 316		6
8 Aisi 316		8

Senza raccordo Raccordo a compressione in ottone nichelato filettatura gas 1/8 Raccordo a compressione in ottone nichelato filettatura gas 1/4 Raccordo a compressione in ottone nichelato filettatura gas 1/4 Raccordo a compressione in ottone nichelato filettatura gas 3/8 Per sonde modello UH-UI Raccordo inox filettatura 1/8 gas Raccordo inox filettatura 1/8 gas Raccordo inox filettatura 1/2 gas Raccordo inox filettatura 3/4 gas Fili liberi Connettore maschio standard volante Connettore femmina standard volante Connettore femmina standard volante Connettore femmina mignon volante Connettore femmina mignon volante	Per sonda modello UG	
nichelato filettatura gas 1/8 Raccordo a compressione in ottone nichelato filettatura gas 1/4 Raccordo a compressione in ottone nichelato filettatura gas 3/8 Per sonde modello UH-UI Raccordo inox filettatura 1/8 gas Raccordo inox filettatura 1/8 gas Raccordo inox filettatura 1/2 gas Raccordo inox filettatura 1/2 gas Raccordo inox filettatura 3/8 gas Raccordo inox filettatura 1/2 gas Raccordo inox filettatura 1/2 gas Fili liberi Connettore maschio standard volante Connettore femmina standard volante Connettore maschio mignon volante Connettore maschio mignon volante	Senza raccordo	0
nichelato filettatura gas 1/4 Raccordo a compressione in ottone nichelato filettatura gas 3/8 Per sonde modello UH-UI Raccordo inox filettatura 1/8 gas 1 Raccordo inox filettatura 1/4 gas 2 Raccordo inox filettatura 3/8 gas 3 Raccordo inox filettatura 1/2 gas 4 Raccordo inox filettatura 1/2 gas 5 Raccordo inox filettatura 1/2 gas 6 Raccordo inox filettatura 1/2 gas 6 Raccordo inox filettatura 3/4 gas 7 Raccordo inox filettatura M8x1 6 TERMINAZIONE SONDA E Fili liberi 0 Connettore maschio standard volante A Connettore femmina standard volante B Connettore maschio mignon volante C		1
nichelato filettatura gas 3/8 Per sonde modello UH-UI Raccordo inox filettatura 1/8 gas 1 Raccordo inox filettatura 1/4 gas 2 Raccordo inox filettatura 3/8 gas 3 Raccordo inox filettatura 3/8 gas 4 Raccordo inox filettatura 3/4 gas 5 Raccordo inox filettatura 3/4 gas 6 TERMINAZIONE SONDA E Fili liberi 0 Connettore maschio standard volante A Connettore femmina standard volante C	·	2
Raccordo inox filettatura 1/8 gas 1 Raccordo inox filettatura 1/4 gas 2 Raccordo inox filettatura 3/8 gas 3 Raccordo inox filettatura 1/2 gas 4 Raccordo inox filettatura 3/4 gas 5 Raccordo inox filettatura 3/4 gas 6 TERMINAZIONE SONDA E Fili liberi 0 Connettore maschio standard volante A Connettore femmina standard volante C	·	3
Raccordo inox filettatura 1/4 gas Raccordo inox filettatura 3/8 gas Raccordo inox filettatura 1/2 gas Raccordo inox filettatura 1/2 gas Raccordo inox filettatura 3/4 gas Faccordo inox filettatura M8x1 TERMINAZIONE SONDA Fili liberi Connettore maschio standard volante Connettore femmina standard volante Connettore maschio mignon volante C	Per sonde modello UH-UI	
Raccordo inox filettatura 3/8 gas Raccordo inox filettatura 1/2 gas 4 Raccordo inox filettatura 3/4 gas 5 Raccordo inox filettatura 3/4 gas 6 TERMINAZIONE SONDA Fili liberi Connettore maschio standard volante Connettore femmina standard volante Connettore maschio mignon volante C	Raccordo inox filettatura 1/8 gas	1
Raccordo inox filettatura 1/2 gas 4 Raccordo inox filettatura 3/4 gas 5 Raccordo inox filettatura 3/4 gas 5 Raccordo inox filettatura M8x1 6 TERMINAZIONE SONDA Fili liberi 0 Connettore maschio standard volante A Connettore femmina standard volante B Connettore maschio mignon volante C	Raccordo inox filettatura 1/4 gas	2
Raccordo inox filettatura 3/4 gas 5 Raccordo inox filettatura M8x1 6 TERMINAZIONE SONDA E Fili liberi 0 Connettore maschio standard volante A Connettore femmina standard volante B Connettore maschio mignon volante C	Raccordo inox filettatura 3/8 gas	3
Raccordo inox filettatura M8x1 6 TERMINAZIONE SONDA E Fili liberi 0 Connettore maschio standard volante A Connettore femmina standard volante B Connettore maschio mignon volante C	Raccordo inox filettatura 1/2 gas	4
TERMINAZIONE SONDA Fili liberi 0 Connettore maschio standard volante A Connettore femmina standard volante B Connettore maschio mignon volante C	Raccordo inox filettatura 3/4 gas	5
Fili liberi 0 Connettore maschio standard volante A Connettore femmina standard volante B Connettore maschio mignon volante C	Raccordo inox filettatura M8x1	6
Connettore maschio standard volante A Connettore femmina standard volante B Connettore maschio mignon volante C	TERMINAZIONE SONDA	Ε
Connettore femmina standard volante B Connettore maschio mignon volante C	Fili liberi	0
Connettore maschio mignon volante C	Connettore maschio standard volante	Α
3.00.000	Connettore femmina standard volante	В
Connettore femmina mignon volante D	Connettore maschio mignon volante	С
	Connettore femmina mignon volante	D

TIPI DI RACCORDO

DATI TECNICI

- Temperatura di funzionamento: -50 .. 180 °C
- Precisione: secondo IEC 751


COLLEGAMENTI ELETTRICI

Fili liberi, rispettare la polarità durante il collegamento (verificare nella tabella dei codici colori)

TERMOCOPPIE SERIE TUTTO CAVO

CON CAVO IN PVC

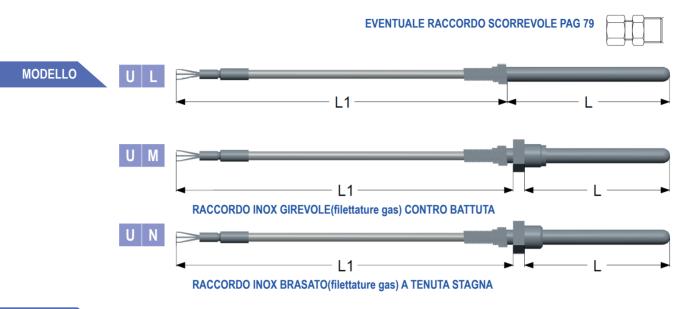
TIPO E CLASSE DI TOLLERANZA		Α
T	Т	Т
Termocoppie,tolleranza Norme Ansi	J	J
140111074101	K	K
	Τ	Α
Termocoppie,tolleranza Norme Din	J	С
Normo Bin	K	F
TIPI DI GIUNTO		В
TIPI DI GIUNTO		В
Isolato da massa		- 1
A massa		M
Esposto		Е
DIAMETRO SONDA (mm)		С
DIAMETRO SONDA (IIIII)		U U
4 Aisi 304		4
5 Aisi 304		5
6 Aisi 316		6
8 Aisi 316		8

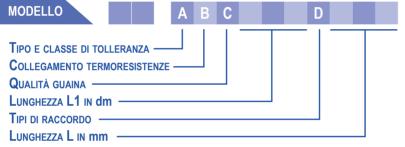
TIPI DI RACCORDO — LUNGHEZZA L IN MM TERMINAZIONE SONDA

TIPI DI RACCORDO	D
Per sonda modello VY	
Senza raccordo	0
Raccordo a compressione in ottone nichelato filettatura gas 1/8	1
Raccordo a compressione in ottone nichelato filettatura gas 1/4	2
Raccordo a compressione in ottone nichelato filettatura gas 3/8	3
Per sonde modello VK-V8	
Raccordo inox filettatura 1/8 gas	1
Raccordo inox filettatura 1/4 gas	2
Raccordo inox filettatura 3/8 gas	3
Raccordo inox filettatura 1/2 gas	4
Raccordo inox filettatura 3/4 gas	5
Raccordo inox filettatura M8x1	6
TERMINAZIONE SONDA	Е
Fili liberi	0
Connettore maschio standard volante	Α
Connettore femmina standard volante	В
Connettore maschio mignon volante	С
Connettore femmina mignon volante	D

DATI TECNICI

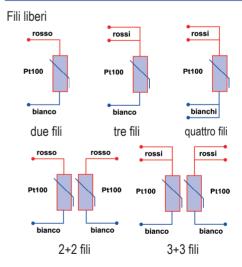
- Temperatura di funzionamento: -50 .. 100 °C
- Precisione: secondo ANSI MC96.1/IEC 584


COLLEGAMENTI ELETTRICI

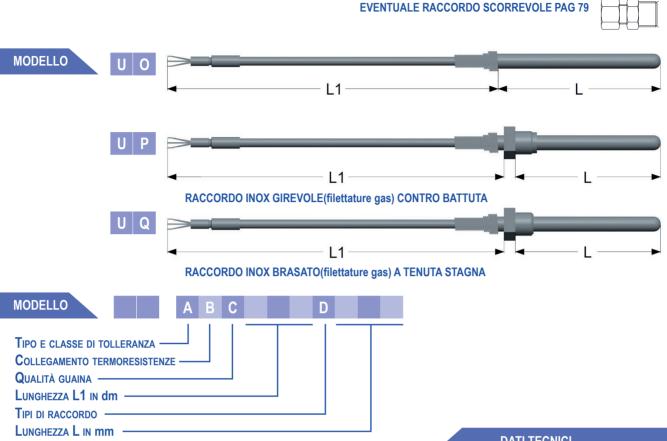

Fili liberi, rispettare la polarità durante il collegamento (verificare nella tabella dei codici colori)

TERMORESISTENZE SERIE TUTTO CAVO

CON CAVO IN ELETTROVETRO


TIPO E CLASSE DI TOLLERANZ	A	Α
	Т	Т
Termocoppie, tolleranza Gr I Norme Ansi E		J
		Е
	K	K
	Т	1
Termocoppie, tolleranza Gr II	J	2
Norme Ansi	Е	3
	K	4
Termoresistenza pt100 OHM a 0 °C 1 D	IN	Α
Termoresistenza pt100 OHM a 0 °C 1/2 l	DIN	В
Termoresistenza pt100 OHM a 0 °C 1/3 I	DIN	С
Termoresistenza pt100 OHM a 0 °C 1/5 DIN		D
Termoresistenza pt100 OHM a 0 °C 1/10DIN		Е
COLLEGAMENTO TERMORESISTI	ENZE	В
1 pt 100 a 2 fili		1
1 pt 100 a 3 fili		2
1 pt 100 a 4 fili		3
2 pt 100 a 2 fili		4
2 pt 100 a 3 fili		5
DIAMETRO SONDA (mm)		С
4 Aisi 304		4
5 Aisi 304		5
6 Aisi 304		6
		8

TIPI DI RACCORDO Per sonda modello UL Senza raccordo Raccordo a compressione in ottone nichelato filettatura gas 1/8
Senza raccordo 0 Raccordo a compressione in ottone 1
Raccordo a compressione in ottone
Raccordo a compressione in ottone nichelato filettatura gas 1/4
Raccordo a compressione in ottone nichelato filettatura gas 3/8
Per sonde modello UM-UN
Raccordo inox filettatura 1/8 gas 1
Raccordo inox filettatura 1/4 gas 2
Raccordo inox filettatura 3/8 gas 3
Raccordo inox filettatura 1/2 gas 4
Raccordo inox filettatura 3/4 gas 5
Raccordo inox filettatura M8x1 6


DATI TECNICI

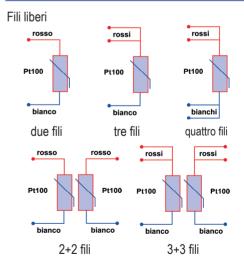
- Temperatura di funzionamento: -50 .. 400 °C
- Precisione: secondo IEC 751

COLLEGAMENTI ELETTRICI

N CAVO IN TEFLON

TIPO E CLASSE DI TOLLERANZA		Α
	Т	Т
Termocoppie, tolleranza Gr I	J	J
Norme Ansi	Е	Е
	K	K
	T	1
Termocoppie, tolleranza Gr II	J	2
Norme Ansi	Е	3
	K	4
Termoresistenza pt100 OHM a 0 °C 1 DIN	١	Α
Termoresistenza pt100 OHM a 0 °C 1/2 DI	N	В
Termoresistenza pt100 OHM a 0 °C 1/3 DIN		С
Termoresistenza pt100 OHM a 0 °C 1/5 DIN		D
Termoresistenza pt100 OHM a 0 °C 1/10D	IN	Е
COLLEGAMENTO TERMORESISTE	NZE	В
1 pt 100 a 2 fili		1
1 pt 100 a 3 fili		2
1 pt 100 a 4 fili		3
2 pt 100 a 2 fili		4
2 pt 100 a 3 fili		5
DIAMETRO SONDA (mm)		С
4 Aisi 304		4

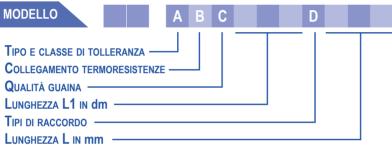
5 Aisi 304


6 Aisi 304 8 Aisi 316

TIPI DI RACCORDO	יטו
Per sonda modello UO	
Senza raccordo	0
Raccordo a compressione in ottone nichelato filettatura gas 1/8	1
Raccordo a compressione in ottone nichelato filettatura gas 1/4	2
Raccordo a compressione in ottone nichelato filettatura gas 3/8	3
Per sonde modello UP-UQ	
Raccordo inox filettatura 1/8 gas	1
Raccordo inox filettatura 1/4 gas	2
Raccordo inox filettatura 3/8 gas	3
Raccordo inox filettatura 1/2 gas	4
Raccordo inox filettatura 3/4 gas	5
Raccordo inox filettatura M8x1	6

DATI TECNICI

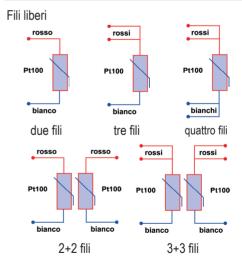
- Temperatura di funzionamento: -50 .. 250 °C
- Precisione: secondo IEC 751


COLLEGAMENTI ELETTRICI

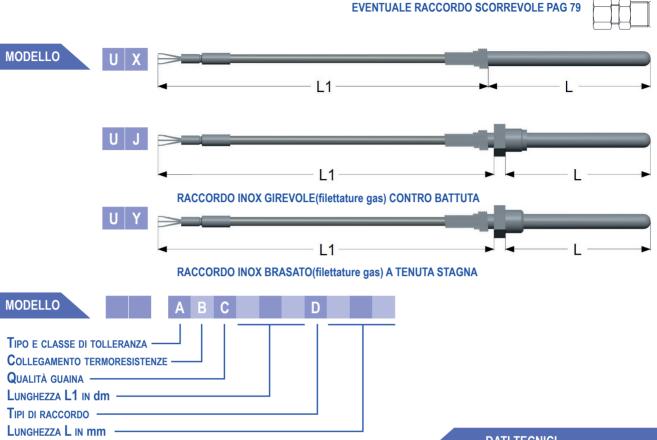
TERMORESISTENZE SERIE TUTTO CAVO

CON CAVO IN PVC

TIPO E CLASSE DI TOLLERANZA		Α
	Т	Т
Termocoppie, tolleranza Gr I J		J
Norme Ansi	Е	Е
	K	K
	Т	1
Termocoppie, tolleranza Gr II	J	2
Norme Ansi	Е	3
	K	4
Termoresistenza pt100 OHM a 0 °C 1 DIN	I	Α
Termoresistenza pt100 OHM a 0 °C 1/2 DIN		В
Termoresistenza pt100 OHM a 0 °C 1/3 DIN		С
Termoresistenza pt100 OHM a 0 °C 1/5 DIN		D
Termoresistenza pt100 OHM a 0 °C 1/10D	N	Е
COLLEGAMENTO TERMORESISTEM	NZE	В
1 pt 100 a 2 fili		1
1 pt 100 a 3 fili		2
1 pt 100 a 4 fili		3
2 pt 100 a 2 fili		4
2 pt 100 a 3 fili		5
DIAMETRO SONDA (mm)		С
4 Aisi 304		4
5 Aisi 304		5


6 Aisi 304 8 Aisi 316

TIPI DI RACCORDO	D
Per sonda modello UV	
Senza raccordo	0
Raccordo a compressione in ottone nichelato filettatura gas 1/8	1
Raccordo a compressione in ottone nichelato filettatura gas 1/4	2
Raccordo a compressione in ottone nichelato filettatura gas 3/8	3
Per sonde modello UZ-UK	
Raccordo inox filettatura 1/8 gas	1
Raccordo inox filettatura 1/4 gas	2
Raccordo inox filettatura 3/8 gas	3
Raccordo inox filettatura 1/2 gas	4
Raccordo inox filettatura 3/4 gas	5
Raccordo inox filettatura M8x1	6

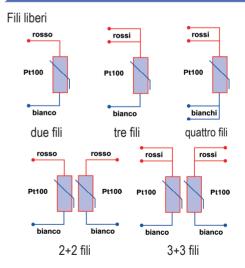

DATI TECNICI

- Temperatura di funzionamento: -50 .. 100 °C
- Precisione: secondo IEC 751

COLLEGAMENTI ELETTRICI

N CAVO IN GOMMA SILICONE

TIPO E CLASSE DI TOLLERANZA		Α
	Т	Т
Termocoppie, tolleranza Gr I Norme Ansi E		J
		Е
	K	K
	Т	1
Termocoppie, tolleranza Gr II	J	2
Norme Ansi	Е	3
	K	4
Termoresistenza pt100 OHM a 0 °C 1 DIN	I	Α
Termoresistenza pt100 OHM a 0 °C 1/2 DIN		В
Termoresistenza pt100 OHM a 0 °C 1/3 DIN		С
Termoresistenza pt100 OHM a 0 °C 1/5 DIN		D
Termoresistenza pt100 OHM a 0 °C 1/10DIN		Е
COLLEGAMENTO TERMORESISTE	NZE	В
1 pt 100 a 2 fili		1
1 pt 100 a 3 fili		2
1 pt 100 a 4 fili		3
2 pt 100 a 2 fili		4
2 pt 100 a 3 fili		5
DIAMETRO SONDA (mm)		С
4 Aisi 304		4
5 Aisi 304		5
3 AlSI 304		5


6 Aisi 304 8 Aisi 316

TIPI DI RACCORDO	D
Per sonda modello UX	
Senza raccordo	0
Raccordo a compressione in ottone nichelato filettatura gas 1/8	1
Raccordo a compressione in ottone nichelato filettatura gas 1/4	2
Raccordo a compressione in ottone nichelato filettatura gas 3/8	3
Per sonde modello UJ-UY	
Raccordo inox filettatura 1/8 gas	1
Raccordo inox filettatura 1/4 gas	2
Raccordo inox filettatura 3/8 gas	3
Raccordo inox filettatura 1/2 gas	4
Raccordo inox filettatura 3/4 gas	5
Raccordo inox filettatura M8x1	6

DATI TECNICI

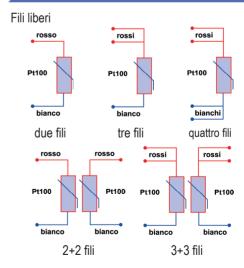
- Temperatura di funzionamento: -50 .. 180 °C
- Precisione: secondo IEC 751

COLLEGAMENTI ELETTRICI

TERMORESISTENZE CON INSERTO PER ALTE TEMPERATURE (500 °C)

CON CAVO IN PVC

TIPO E CLASSE DI TOLLERANZA		Α
	Т	Т
Termocoppie, tolleranza Gr I	J	J
Norme Ansi	Е	Е
	K	K
	Т	1
Termocoppie, tolleranza Gr II	J	2
Norme Ansi	Е	3
		4
Termoresistenza pt100 OHM a 0 °C 1 DIN		Α
Termoresistenza pt100 OHM a 0 °C 1/2 DII	V	В
Termoresistenza pt100 OHM a 0 °C 1/3 DII	V	С
Termoresistenza pt100 OHM a 0 °C 1/5 DII	V	D
Termoresistenza pt100 OHM a 0 °C 1/10DIN		Е
COLLEGAMENTO TERMORESISTEM	IZE	В
1 pt 100 a 2 fili		1


1 pt 100 a 3 fili	2
1 pt 100 a 4 fili	3
2 pt 100 a 2 fili	4
2 pt 100 a 3 fili	5
DIAMETRO SONDA (mm)	С
3 Aisi 304	3
3 AlSI 304	3
3.17 Aisi 304	В
3.17 Aisi 304	В
3.17 Aisi 304 4 Aisi 304	B 4

TIPI DI RACCORDO	D
Per sonda modello U1	
Senza raccordo	0
Raccordo a compressione in ottone nichelato filettatura gas 1/8	1
Raccordo a compressione in ottone nichelato filettatura gas 1/4	2
Raccordo a compressione in ottone nichelato filettatura gas 3/8	3
Per sonde modello U2-U3	
Raccordo inox filettatura 1/8 gas	1
Raccordo inox filettatura 1/4 gas	2
Raccordo inox filettatura 3/8 gas	3
Raccordo inox filettatura 1/2 gas	4
Raccordo inox filettatura 3/4 gas	5
Raccordo inox filettatura M8x1	6

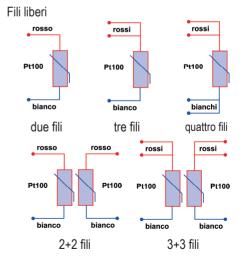
DATI TECNICI

- Temperatura di funzionamento: -50 .. 500 °C
- Precisione: secondo IEC 751
- Temperatura di lavoro del cavo di collegamento 100 °C
- Temperatura di lavoro del transition 200 °C

COLLEGAMENTI ELETTRICI

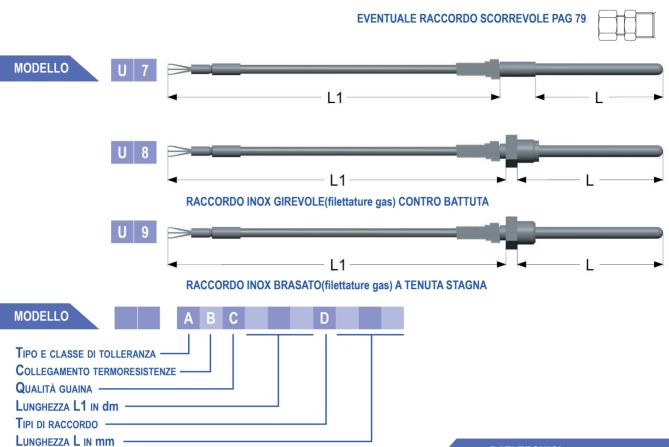
CON CAVO IN GOMMA SILICONE

MODELLO		A B	C	D	
TIPO E CLASSE DI TOL COLLEGAMENTO TERM QUALITÀ GUAINA — LUNGHEZZA L1 IN dm TIPI DI RACCORDO — LUNGHEZZA L IN mm	n —				
LUNGHEZZA L IN IIIIII					


TIPO E CLASSE DI TOLLERANZA
Termocoppie, tolleranza Gr I J J Norme Ansi E E K K
Norme Ansi E E K K
K K
T 1
<u> </u>
Termocoppie, tolleranza Gr II
Norme Ansi E 3
K 4
Termoresistenza pt100 OHM a 0 °C 1 DIN
Termoresistenza pt100 OHM a 0 °C 1/2 DIN
Termoresistenza pt100 OHM a 0 °C 1/3 DIN C
Termoresistenza pt100 OHM a 0 °C 1/5 DIN
Termoresistenza pt100 OHM a 0 °C 1/10DIN E
COLLEGAMENTO TERMORESISTENZE B
COLLEGAMENTO TERMORESISTENZE B 1 pt 100 a 2 fili 1
1 pt 100 a 2 fili 1
1 pt 100 a 2 fili 1 1 pt 100 a 3 fili 2
1 pt 100 a 2 fili 1 1 pt 100 a 3 fili 2 1 pt 100 a 4 fili 3
1 pt 100 a 2 fili 1 1 pt 100 a 3 fili 2 1 pt 100 a 4 fili 3 2 pt 100 a 2 fili 4
1 pt 100 a 2 fili 1 1 pt 100 a 3 fili 2 1 pt 100 a 4 fili 3 2 pt 100 a 2 fili 4 2 pt 100 a 3 fili 5
1 pt 100 a 2 fili 1 1 pt 100 a 3 fili 2 1 pt 100 a 4 fili 3 2 pt 100 a 2 fili 4 2 pt 100 a 3 fili 5 DIAMETRO SONDA (mm)
1 pt 100 a 2 fili 1 1 pt 100 a 3 fili 2 1 pt 100 a 4 fili 3 2 pt 100 a 2 fili 4 2 pt 100 a 3 fili 5 DIAMETRO SONDA (mm) C 3 Aisi 304 3
1 pt 100 a 2 fili 1 1 1 pt 100 a 3 fili 2 1 pt 100 a 4 fili 3 2 pt 100 a 2 fili 4 2 pt 100 a 3 fili 5 DIAMETRO SONDA (mm) C 3 Aisi 304 3 3.17 Aisi 304 B
1 pt 100 a 2 fili 1 1 1 pt 100 a 3 fili 2 1 1 pt 100 a 4 fili 3 2 pt 100 a 2 fili 4 2 pt 100 a 2 fili 5 5 DIAMETRO SONDA (mm) C 3 Aisi 304 3 3.17 Aisi 304 4 Aisi 304 4

TIPI DI RACCORDO	D
Per sonda modello U4	
Senza raccordo	0
Raccordo a compressione in ottone nichelato filettatura gas 1/8	1
Raccordo a compressione in ottone nichelato filettatura gas 1/4	2
Raccordo a compressione in ottone nichelato filettatura gas 3/8	3
Per sonde modello U5-U6	
Raccordo inox filettatura 1/8 gas	1
Raccordo inox filettatura 1/4 gas	2
Raccordo inox filettatura 3/8 gas	3
Raccordo inox filettatura 1/2 gas	4
Raccordo inox filettatura 3/4 gas	5
Raccordo inox filettatura M8x1	6

DATI TECNICI


- Temperatura di funzionamento: -50 .. 500 °C
- Precisione: secondo IEC 751
- Temperatura di lavoro del cavo di collegamento 180 °C
- Temperatura di lavoro del transition 200 °C

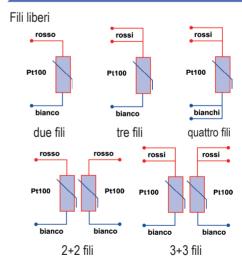
COLLEGAMENTI ELETTRICI

TERMORESISTENZE CON INSERTO PER ALTE TEMPERATURE (500 °C)

CON VETRO SILICONE

TIPO E CLASSE DI TOLLERANZA		Α
	Т	Т
Termocoppie, tolleranza Gr I	J	J
Norme Ansi	Е	Е
	K	K
	Т	1
Termocoppie, tolleranza Gr II	J	2
Norme Ansi	Е	3
	K	4
Termoresistenza pt100 OHM a 0 °C 1 DIN		Α
Termoresistenza pt100 OHM a 0 °C 1/2 DIN		В
Termoresistenza pt100 OHM a 0 °C 1/3 DIN		С
Termoresistenza pt100 OHM a 0 °C 1/5 DIN		D
Termoresistenza pt100 OHM a 0 °C 1/10DIN		Е
COLLEGAMENTO TERMORESISTENZ	ZE	В
1 pt 100 a 2 fili		1
1 pt 100 a 3 fili		2
1 pt 100 a 4 fili		3
2 pt 100 a 2 fili		
2 pt 100 d 2 iiii		4
2 pt 100 a 3 fili		5
· ·		· ·
2 pt 100 a 3 fili		5
2 pt 100 a 3 fili DIAMETRO SONDA (mm)		5 C
2 pt 100 a 3 fili DIAMETRO SONDA (mm) 3 Aisi 304		5 C

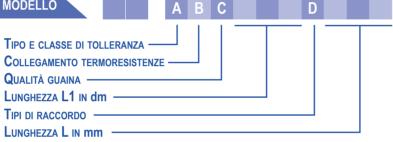
6 Aisi 304


8 Aisi 316

TIPI DI RACCORDO	D
Per sonda modello U7	
Senza raccordo	0
Raccordo a compressione in ottone nichelato filettatura gas 1/8	1
Raccordo a compressione in ottone nichelato filettatura gas 1/4	2
Raccordo a compressione in ottone nichelato filettatura gas 3/8	3
Per sonde modello U8-U9	
Raccordo inox filettatura 1/8 gas	1
Raccordo inox filettatura 1/4 gas	2
Raccordo inox filettatura 3/8 gas	3
Raccordo inox filettatura 1/2 gas	4
Raccordo inox filettatura 3/4 gas	5
Raccordo inox filettatura M8x1	6

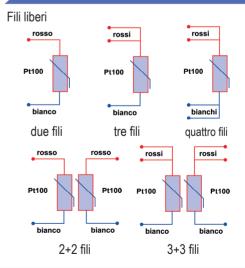
DATI TECNICI

- Temperatura di funzionamento: -50 .. 500 °C
- Precisione: secondo IEC 751
- Temperatura di lavoro del cavo di collegamento 400 °C
- Temperatura di lavoro del transition 200 °C


COLLEGAMENTI ELETTRICI

TERMOSONDE PER RILIEVI AEROTERMIC

CON CAVO IN PVC


Termocoppie, tolleranza Gr I Norme Ansi Termocoppie, tolleranza Gr II Norme Ansi Termocoppie, tolleranza Gr II Norme Ansi Termoresistenza pt100 OHM a 0 °C 1 DIN Termoresistenza pt100 OHM a 0 °C 1/2 DIN Termoresistenza pt100 OHM a 0 °C 1/3 DIN Termoresistenza pt100 OHM a 0 °C 1/5 DIN Termoresistenza pt100 OHM a 0 °C 1/5 DIN COLLEGAMENTO TERMORESISTENZE B 1 pt 100 a 2 fili 1 pt 100 a 3 fili 2 pt 100 a 4 fili 3 Per termocoppia giunto esposto DIAMETRO SONDA (mm) 5 Aisi 304 6 Aisi 304 6 Aisi 304 6 Aisi 304 6 6	TIPO E CLASSE DI TOLLERANZA		Α
Norme Ansi		Т	Т
Termocoppie, tolleranza Gr II Norme Ansi Termoresistenza pt100 OHM a 0 °C 1 DIN Termoresistenza pt100 OHM a 0 °C 1/2 DIN Termoresistenza pt100 OHM a 0 °C 1/3 DIN COLLEGAMENTO TERMORESISTENZE 1 pt 100 a 2 fili 1 pt 100 a 3 fili 2 pr 100 a 4 fili Per termocoppia giunto esposto DIAMETRO SONDA (mm) 5 Aisi 304 5 6 Aisi 304 6		J	J
Termocoppie, tolleranza Gr II	Northe Allsi	K	K
Norme Ansi		Т	1
Termoresistenza pt100 OHM a 0 °C 1 DIN A Termoresistenza pt100 OHM a 0 °C 1/2 DIN B Termoresistenza pt100 OHM a 0 °C 1/3 DIN C Termoresistenza pt100 OHM a 0 °C 1/3 DIN C Termoresistenza pt100 OHM a 0 °C 1/5 DIN D COLLEGAMENTO TERMORESISTENZE B 1 pt 100 a 2 fili 1 1 pt 100 a 3 fili 2 1 pt 100 a 4 fili 3 Per termocoppia giunto esposto E DIAMETRO SONDA (mm) C 5 Aisi 304 5 6 Aisi 304 6	11.7	J	2
Termoresistenza pt100 OHM a 0 °C 1/2 DIN B Termoresistenza pt100 OHM a 0 °C 1/3 DIN C Termoresistenza pt100 OHM a 0 °C 1/5 DIN D COLLEGAMENTO TERMORESISTENZE B 1 pt 100 a 2 fili 1 1 1 1 1 1 1 1 1	Norme And	K	4
Termoresistenza pt100 OHM a 0 °C 1/3 DIN C	Termoresistenza pt100 OHM a 0 °C 1 DII	N	Α
Termoresistenza pt100 OHM a 0 °C 1/5 DIN D	Termoresistenza pt100 OHM a 0 °C 1/2 D	IN	В
COLLEGAMENTO TERMORESISTENZE B 1 pt 100 a 2 fili 1 1 pt 100 a 3 fili 2 1 pt 100 a 4 fili 3 Per termocoppia giunto esposto E DIAMETRO SONDA (mm) C 5 Aisi 304 5 6 Aisi 304 6	Termoresistenza pt100 OHM a 0 °C 1/3 D	IN	С
1 pt 100 a 2 fili 1 1 pt 100 a 3 fili 2 1 pt 100 a 3 fili 3 Per termocoppia giunto esposto E DIAMETRO SONDA (mm) C 5 Aisi 304 5 6 Aisi 304 6	Termoresistenza pt100 OHM a 0 °C 1/5 D	IN	D
1 pt 100 a 2 fili 1 1 pt 100 a 3 fili 2 1 pt 100 a 3 fili 3 Per termocoppia giunto esposto E DIAMETRO SONDA (mm) C 5 Aisi 304 5 6 Aisi 304 6			
1 pt 100 a 3 fili 2 1 pt 100 a 4 fili 3 Per termocoppia giunto esposto E DIAMETRO SONDA (mm) C 5 Aisi 304 5 6 Aisi 304 6	COLLEGAMENTO TERMORESISTE	NZE	В
1 pt 100 a 4 fili 3 Per termocoppia giunto esposto E DIAMETRO SONDA (mm) C 5 Aisi 304 5 6 Aisi 304 6		NZE	
DIAMETRO SONDA (mm) C 5 Aisi 304 5 6 Aisi 304 6	1 pt 100 a 2 fili	NZE	1
DIAMETRO SONDA (mm) C 5 Aisi 304 5 6 Aisi 304 6	1 pt 100 a 2 fili 1 pt 100 a 3 fili	NZE	1 2
5 Aisi 304 5 6 Aisi 304 6	1 pt 100 a 2 fili 1 pt 100 a 3 fili 1 pt 100 a 4 fili	NZE	1 2 3
6 Aisi 304 6	1 pt 100 a 2 fili 1 pt 100 a 3 fili 1 pt 100 a 4 fili Per termocoppia giunto esposto	NZE	1 2 3 E
	1 pt 100 a 2 fili 1 pt 100 a 3 fili 1 pt 100 a 4 fili Per termocoppia giunto esposto	NZE	1 2 3 E
8 Aisi 316 8	1 pt 100 a 2 fili 1 pt 100 a 3 fili 1 pt 100 a 3 fili 1 pt 100 a 4 fili Per termocoppia giunto esposto DIAMETRO SONDA (mm)	NZE	1 2 3 E
	1 pt 100 a 2 fili 1 pt 100 a 3 fili 1 pt 100 a 3 fili 1 pt 100 a 4 fili Per termocoppia giunto esposto DIAMETRO SONDA (mm) 5 Aisi 304	NZE	1 2 3 E

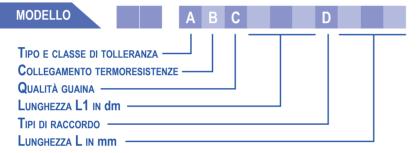
TIPI DI RACCORDO	ט
Per sonda modello VA	
Senza raccordo	0
Raccordo a compressione in ottone nichelato filettatura gas 1/8	1
Raccordo a compressione in ottone nichelato filettatura gas 1/4	2
Raccordo a compressione in ottone nichelato filettatura gas 3/8	3
Per sonde modello VB-VC	
Raccordo inox filettatura 1/8 gas	1
Raccordo inox filettatura 1/4 gas	2
Raccordo inox filettatura 3/8 gas	3
Raccordo inox filettatura 1/2 gas	4
Raccordo inox filettatura 3/4 gas	5
Raccordo inox filettatura M8x1	6

DATI TECNICI

- Temperatura di funzionamento: -50 .. 100 °C
- Precisione: secondo ANSI MC96.1/IEC 584 (sensori a termocoppia) IEC 751 (sensori a termoresistenza)

COLLEGAMENTI ELETTRICI

Termocoppie fili liberi, rispettare la polarità durante il collegamento (verificare nella tabella dei codici colori)



TERMOSONDE PER RILIEVI AEROTERMICI

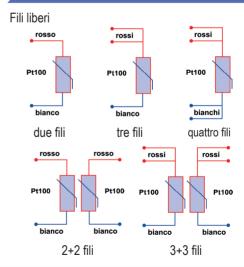
CON CAVO IN GOMMA SILICONE

RACCORDO INOX BRASATO (filettature gas) A TENUTA STAGNA

TIPO E CLASSE DI TOLLERANZA	Α
1	Т
Termocoppie, tolleranza Gr I Norme Ansi	J
K	K
Towns and tall and the U	1
Termocoppie, tolleranza Gr II Norme Ansi	2
k	4
Termoresistenza pt100 OHM a 0 °C 1 DIN	Α
Termoresistenza pt100 OHM a 0 °C 1/2 DIN	В
Termoresistenza pt100 OHM a 0 °C 1/3 DIN	С
Termoresistenza pt100 OHM a 0 °C 1/5 DIN	
Tormorodiotoriza perco or initia o o no bire	D
COLLEGAMENTO TERMORESISTENZ	
·	
COLLEGAMENTO TERMORESISTENZ	Е В
COLLEGAMENTO TERMORESISTENZ 1 pt 100 a 2 fili	E B
COLLEGAMENTO TERMORESISTENZ 1 pt 100 a 2 fili 1 pt 100 a 3 fili	E B 1 2
COLLEGAMENTO TERMORESISTENZ 1 pt 100 a 2 fili 1 pt 100 a 3 fili 1 pt 100 a 4 fili	E B 1 2 3
COLLEGAMENTO TERMORESISTENZ 1 pt 100 a 2 fili 1 pt 100 a 3 fili 1 pt 100 a 4 fili Per termocoppia giunto esposto	1 2 3 E
COLLEGAMENTO TERMORESISTENZ 1 pt 100 a 2 fili 1 pt 100 a 3 fili 1 pt 100 a 4 fili Per termocoppia giunto esposto DIAMETRO SONDA (mm)	E B 1 2 3 E

MODELLO

T B

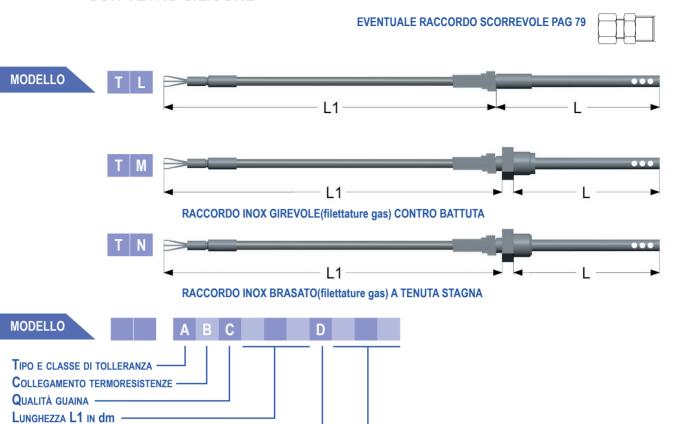

TC

TIPI DI RACCORDO	D
Per sonda modello TA	
Senza raccordo	0
Raccordo a compressione in ottone nichelato filettatura gas 1/8	1
Raccordo a compressione in ottone nichelato filettatura gas 1/4	2
Raccordo a compressione in ottone nichelato filettatura gas 3/8	3
Per sonde modello TB-TC	
Raccordo inox filettatura 1/8 gas	1
Raccordo inox filettatura 1/4 gas	2
Raccordo inox filettatura 3/8 gas	3
Raccordo inox filettatura 1/2 gas	4
Raccordo inox filettatura 3/4 gas	5
Raccordo inox filettatura M8x1	6

DATI TECNICI

- Temperatura di funzionamento: -50 .. 180 °C
- Precisione: secondo ANSI MC96.1/IEC 584 (sensori a termocoppia) IEC 751 (sensori a termoresistenza)

COLLEGAMENTI ELETTRICI

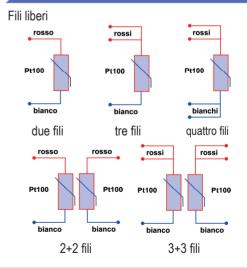


Termocoppie fili liberi, rispettare la polarità durante il collegamento (verificare nella tabella dei codici colori)

TERMOSONDE PER RILIEVI AEROTERMICI

CON VETRO SILICONE

TIPO E CLASSE DI TOLLERANZA		Α
	T	Т
Termocoppie, tolleranza Gr I Norme Ansi	J	J
Northe Arisi	K	K
	Т	1
Termocoppie, tolleranza Gr II Norme Ansi	J	2
Northe Arisi	K	4
Termoresistenza pt100 OHM a 0 °C 1 DI	N	Α
Termoresistenza pt100 OHM a 0 °C 1/2 D	IN	В
Termoresistenza pt100 OHM a 0 °C 1/3 D	IN	С
Termoresistenza pt100 OHM a 0 °C 1/5 D	IN	D
COLLEGAMENTO TERMORESISTE	NZE	В
1 pt 100 a 2 fili		1
1 pt 100 a 3 fili		2
1 pt 100 a 4 fili		3
Per termocoppia giunto esposto		Ε
DIAMETRO SONDA (mm)		C
5 Aisi 304		5
6 Aisi 304		6
8 Aisi 316		8

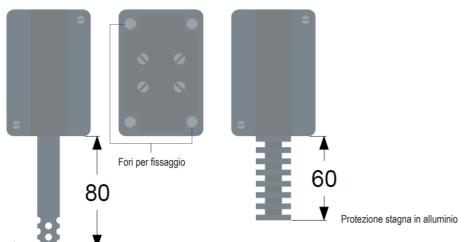

TIPI DI RACCORDO — LUNGHEZZA L IN MM

TIPI DI RACCORDO	עו
Per sonda modello TL	
Senza raccordo	0
Raccordo a compressione in ottone nichelato filettatura gas 1/8	1
Raccordo a compressione in ottone nichelato filettatura gas 1/4	2
Raccordo a compressione in ottone nichelato filettatura gas 3/8	3
Per sonde modello TM-TN	
Raccordo inox filettatura 1/8 gas	1
Raccordo inox filettatura 1/4 gas	2
Raccordo inox filettatura 3/8 gas	3
Raccordo inox filettatura 1/2 gas	4
Raccordo inox filettatura 3/4 gas	5
Raccordo inox filettatura M8x1	6

DATI TECNICI

- Temperatura di funzionamento: -50 .. 400 °C
- Precisione: secondo ANSI MC96.1/IEC 584 (sensori a termocoppia) IEC 751 (sensori a termoresistenza)

COLLEGAMENTI ELETTRICI



Termocoppie fili liberi, rispettare la polarità durante il collegamento (verificare nella tabella dei codici colori)

TERMOSONDE PER RILIEVI AEROTERMICI

PER MONTAGGIO A PARETE

Protezione in nylon con elemento esposto

MODELLO

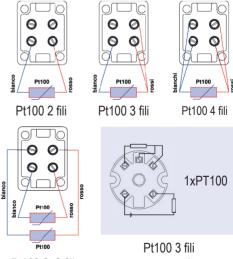
H 5

H 6

MODELLO

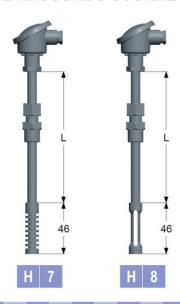
A B C 0 0 0 0 0 0 0 0

TIPO E CLASSE DI TOLLERANZA


COLLEGAMENTO TERMORESISTENZE
COLLEGAMENTO SENSORE

DATI TECNICI

- Temperatura di funzionamento: -50 .. 120 °C
- Precisione: secondo IEC 751
- Scatola per fissaggio a parete in materiale autoestinguente, protezione IP54
- Dimensioni scatola 60x80x38 mm
- Per versione con trasmettitore: indicare campo scala trasmettitore Alimentazione 10 .. 32 V Uscita linearizzata 4 .. 20 mA


COLLEGAMENTI ELETTRICI

Pt100 2+2 fili

con convertitore

TESTINA E RACCORDO SCORREVOLE

MODELLO

MODELLO

TIPO E CLASSE DI TOLLERANZA COLLEGAMENTOTERMORESISTENZA RACCORDO SCORREVOLE -

TIPO DI TESTINA LUNGHEZZA L IN mm

COLLEGAMENTO SENSORE

COLLEGA	MENTO TERMORESISTENZE	В
	1 pt 100 a 2 fili	1
	1 pt 100 a 3 fili	2
	1 pt 100 a 4 fili	3
	2 pt 100 a 2 fili	4
RAC	CORDO SCORREVOLE	С
RAC	CORDO SCORREVOLE 1/4	C A
RAC		A B
RAC	1/4	, ,

COLLEGAMENTO S	SENSORE	Ε
Mosettiera		0
Trasmettitore	Con sicurezza intrinseca	S
DAT 1010	Senza sicurezza intrinseca	Т

TIPO DI TESTINA

В

Testa Mignon

Testa BUS

DATI TECNICI

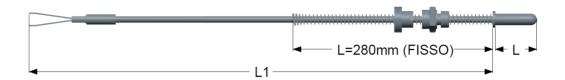
- Temperatura di funzionamento: -50 .. 250 °C
- Precisione: secondo IEC 751
- Testa di connessione tipo DIN B, protezione IP55
- · Uscita cavi, 1/2" gas
- · Adatte al montaggio in condotte
- Per versione con trasmettitore: indicare campo scala trasmettitore Alimentazione 18 .. 32 V Uscita linearizzata 4 .. 20 mA

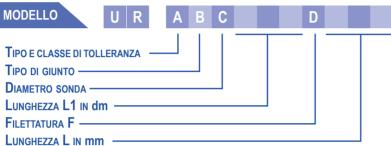
COLLEGAMENTI ELETTRICI

1xPT100 3 fili

1xPT100 4 fili

2xPT100 3+3 fili




Pt100 3 fili con convertitore

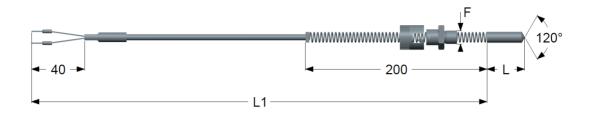
TERMOCOPPIE SERIE TUTTO CAVO CON ATTACCO A BAIONETTA

STANDARD

LUNGHEZZA L IN IIIII		
TIPO E CLASSE DI TOLLERANZA		Α
T	Т	Т
Termocoppie, tolleranza Gr I Norme Ansi	J	J
TOTAL AND	K	K
Termoconnia tellerenza Cr.II	Т	1
Termocoppie, tolleranza Gr II Norme Ansi	J	2
	K	4
TIPI DI GIUNTO		В
Isolato da massa		1
A massa		М
Esposto		Е
DIAMETRO SONDA (mm)		С
4 Aisi 304		4
5 Aisi 304		5
6 Aisi 304		6
8 Aisi 316		8
FILETTATURA F		D
1/4 Gas		A
1/4 Gas		В
14 MA		С
12 MB		D

DATI TECNICI

- Temperatura di funzionamento: -50 .. 400 °C
- Precisione: secondo ANSI MC96.1/IEC 584


COLLEGAMENTI ELETTRICI

Fili liberi, rispettare la polarità durante il collegamento (verificare nella tabella dei codici colori)

TERMOCOPPIE SERIE TUTTO CAVO CON ATTACCO A BAIONETTA

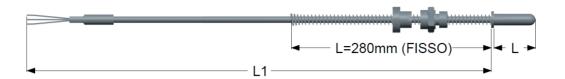
CON PUNTALE A 120°

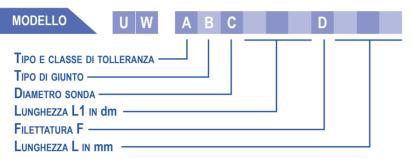
MODELLO U	SA	ВС	D I
TIPO E CLASSE DI TOLLERAN TIPO DI GIUNTO DIAMETRO SONDA LUNGHEZZA L1 IN dm FILETTATURA F LUNGHEZZA L IN mm			

Lunghezza L in mm ————		
LONGREZZA E IN IIIII		
TIPO E CLASSE DI TOLLERANZA		Α
T	Т	Т
Termocoppie, tolleranza Gr I Norme Ansi	J	J
Normo / dioi	K	K
Termoconnia telleronza Cr II	Т	1
Termocoppie, tolleranza Gr II Norme Ansi	J	2
	K	4
TIPI DI GIUNTO		В
Isolato da massa		1
A massa		M
Esposto		Е
DIAMETRO SONDA (mm)		С
4 Aisi 304		4
5 Aisi 304		5
6 Aisi 304		6
8 Aisi 316		8
FILETTATURA F		D
1/4 Gas		Α
1/4 Gas		В
3/8 Gas		С
M10x1		D
12 MA		F
14 MA		G
12 MB		Н

DATI TECNICI

- Temperatura di funzionamento: -50 .. 400 °C
- Precisione: secondo ANSI MC96.1/IEC 584


COLLEGAMENTI ELETTRICI


Fili liberi, rispettare la polarità durante il collegamento (verificare nella tabella dei codici colori)

TERMORESISTENZE SERIE TUTTO CAVO CON ATTACCO A BAIONETTA

STANDARD

D

A B

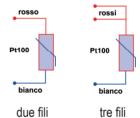
С

TIPO E CLASSE DI TOLLERANZA Termocoppie, tolleranza Gr I Norme Ansi Ε K 1 Termocoppie, tolleranza Gr II 2 Norme Ansi 3 Termoresistenza pt100 OHM a 0 °C 1 DIN Termoresistenza pt100 OHM a 0 °C 1/2 DIN В Termoresistenza pt100 OHM a 0 °C 1/3 DIN С Termoresistenza pt100 OHM a 0 °C 1/5 DIN D Termoresistenza pt100 OHM a 0 °C 1/10DIN Е COLLEGAMENTO TERMORESISTENZE В 1 pt 100 a 2 fili 1 pt 100 a 3 fili **DIAMETRO SONDA (mm)** 4 Aisi 304 5 5 Aisi 304 6 Aisi 304 6 8 8 Aisi 316

FILETTATURA F

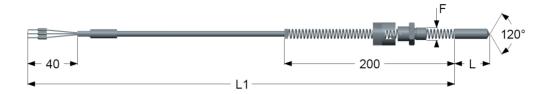
1/4 Gas

12 MA 14 MA


12 MB

DATI TECNICI

- Temperatura di funzionamento: -50 .. 400 °C
- Precisione: secondo IEC 751


COLLEGAMENTI ELETTRICI

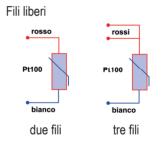
TERMORESISTENZE SERIE TUTTO CAVO CON ATTACCO A BAIONETTA

CON PUNTALE A 120°

MODELLO U T	A B	C	D	
TIPO E CLASSE DI TOLLERANZA TIPO DI GIUNTO DIAMETRO SONDA LUNGHEZZA L1 IN dm FILETTATURA F LUNGHEZZA L IN mm				

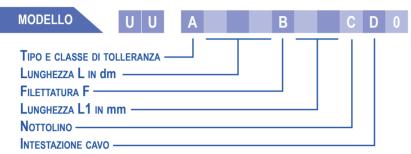
TIPO E CLASSE DI TOLLERANZA		Α
	Т	Т
Termocoppie, tolleranza Gr I	J	J
Norme Ansi	Е	Е
	K	K
		1
Termocoppie, tolleranza Gr II	J	2
Norme Ansi	Е	3
	K	4
Termoresistenza pt100 OHM a 0 °C 1 DIN		Α
Termoresistenza pt100 OHM a 0 °C 1/2 DIN		В
Termoresistenza pt100 OHM a 0 °C 1/3 DIN		С
Termoresistenza pt100 OHM a 0 °C 1/5 DIN		D
Termoresistenza pt100 OHM a 0 °C 1/10DIN		Е

COLLEGAMENTO TERMORESISTENZE	В
1 pt 100 a 2 fili	1
1 pt 100 a 3 fili	2
DIAMETRO SONDA (mm)	С
4 Aisi 304	4


5 Aisi 304

6 Aisi 304	6
8 Aisi 316	8
FILETTATURA F	D
FILETIATURAF	ים
1/4 Gas	Α
1/4 Gas	В
3/8 Gas	С
M10x1	D
12 MA	F
14 MA	G
12 MB	Н

DATI TECNICI


- Temperatura di funzionamento: -50 .. 400 °C
- Precisione: secondo IEC 751

COLLEGAMENTI ELETTRICI

TERMOCOPPIE SERIE TUTTO CAVO CON VITE GIREVOI E

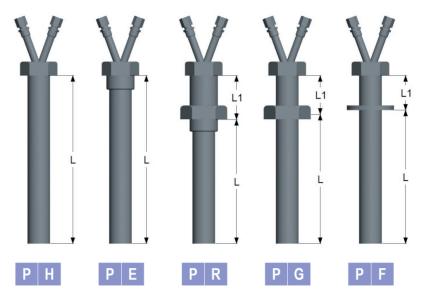
40 **L**

TIPO E CLASSE DI TOLLERAN	NZA	Α
T	T	Т
Termocoppie, tolleranza Gr I Norme Ansi	J	J
Norme And	K	K
T	Т	1
Termocoppie, tolleranza Gr II Norme Ansi	J	2
Norme And	K	4
FILETTATURA F		В
6 MA		Α
M 8x1		В
8 MA		С
M 10x1		D
10 MA		Е
1/8 GAS		F
1/4 GAS		G

1/4 GAS	G
FORMA NOTTOLINO	С
1200	1
	2
INTESTAZIONE CAVO	D
Con puntalini	1
Senza puntalini	2

DATI TECNICI

- Temperatura di funzionamento: -50 .. 400 °C
- Precisione: secondo ANSI MC96.1/IEC 584

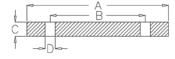

COLLEGAMENTI ELETTRICI

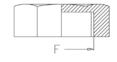
Fili liberi, rispettare la polarità durante il collegamento (verificare nella tabella dei codici colori)

POZZETTI TERMOME

CON GUAINA DI PROTEZIONE IN ACCIAIO

MODELLO

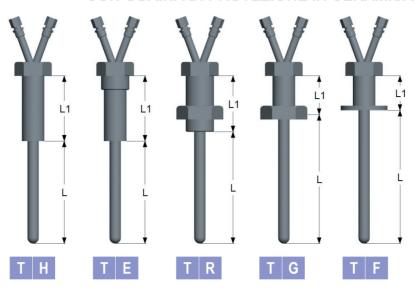

MODELLO	Α			В	0
Qualità guaina — — — — — — — — — — — — — — — — — — —					


QUALITÀ GUAINA			Α
	Diametro guaina (mm)		
	3/8	20	1/2
Aisi 446	Α		
Aisi 310	В	С	D
Aisi 310*	Е	F	G
Inconel 600	Н	- 1	L
Inconel 600*	М	N	0

FLANGE	(UNI 2278 I	PN16) PER	SERIE AF	В
Α	В	С	D	
90	60	12	14	Q
95	65	12	14	R

FILETTO F1	В
1/2"	1
3/4"	2
1"	3
1" 1/4"	4

RACCORDO MASCHIO FISSO PER SERIE PE	В
1/2"	1
3/4"	2
1"	3



DATI TECNICI

- Temperatura di funzionamento: 0 .. 1200 °C max (attenzione!! dipende dal tipo di guaina, verificare i limiti nelle note tecniche)
- Per la selezione dei sensori utilizzabili con i pozzetti termometrici serie P, consultare sul catalogo le sonde delle seguenti serie: GA-GB-GG-GV-GZ-GK

POZZETTI TERMOMETRICI

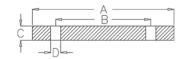
CON GUAINA DI PROTEZIONE IN CERAMICA

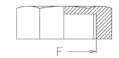
MODELLO

MODELLO

QUALITÀ GUAINA -

LUNGHEZZA L IN MM - LUNGHEZZA L1 IN MM -

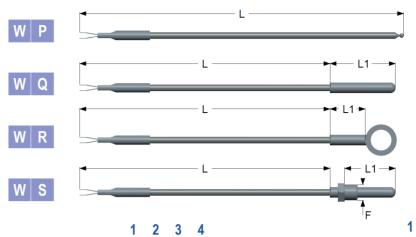

RACCORDI O FLANGE -


QU	IALITÀ GUAI	NA	Α
Diametro cannotto	Diametro ceramica	Pitagoras 610	Allumina 710
3/8	10	1	Α
20	16	2	В
1/2	17	3	С

FLANGE	(UNI 2278 I	PN16) PER	SERIE AF	В
Α	В	С	D	
90	60	12	14	Q
95	65	12	14	R

FILETTO F1	В
1/2"	1
3/4"	2
1"	3
1" 1/4"	4

RACCORDO MASCHIO FISSO PER SERIE PE	С
1/2"	1
3/4"	2
1"	3



DATI TECNICI

- Temperatura di funzionamento: 0 .. 1600 °C max (attenzione!! dipende dal tipo di guaina, verificare i limiti nelle note tecniche)
- Per la selezione dei sensori utilizzabili con i pozzetti termometrici serie P, consultare sul catalogo le sonde delle seguenti serie: GA-GB-GG-GV-GZ-GK

MICROTERMOCOPPIE

CON CAVO IN GOMMA SILICONE

MODELLO

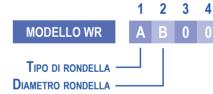
MODELLO A B C TIPO E CLASSE DI TOLLERANZA TIPO DI GIUNTO LUNGHEZZA L IN CM DIAMETRO CAVO TERMINAZIONE CAVO

TIPO E CLASSE DI TOLLERANZA	4	Α
	T	Т
Termocoppie, tolleranza Gr I Norme Ansi	J	J
Northe Alisi	K	K
		1
Termocoppie, tolleranza Gr II Norme Ansi	J	2
Northe Alisi	K	4
TIPI DI GIUNTO		В
Isolato da massa		1
A massa		М
Esposto		Ε

30 AWG 28 AWG	A
	_
	В
24 AWG	С
TERMINAZIONE CAVO	D
Fili liberi	0
Connettore mignon maschio volante	S
Connettore mignon femmina volante	Р
Coppia di connettori mignon	M

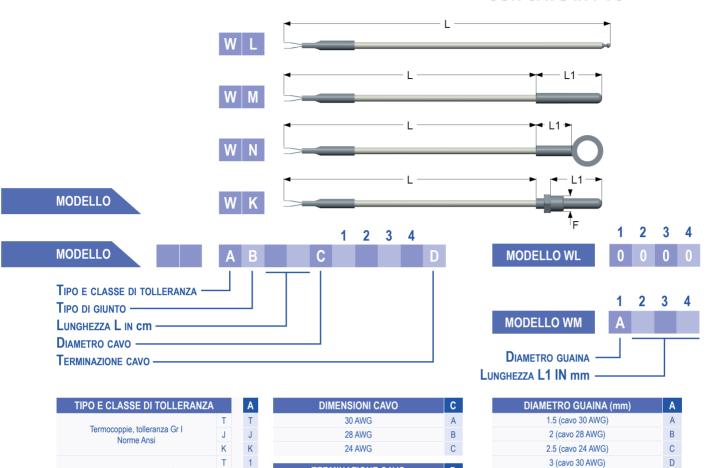
DATI TECNICI

- Temperatura di funzionamento: -50 .. 180 °C
- Precisione: secondo ANSI MC96.1/IEC 584


COLLEGAMENTI ELETTRICI

Fili liberi, rispettare la polarità durante il collegamento (verificare nella tabella dei codici colori)

DIAMETRO GUAINA (MM)	A
1.5 (cavo 30 AWG)	Α
2 (cavo 28 AWG)	В
2.5 (cavo 24 AWG)	С
3 (cavo 30 AWG)	D


TIPO RONDELLA	Α
Rondella in rame	R
Rondella in inox	1
DIAMETRO RONDELLA	В
Per vite da 3 ma	Α
Per vite da 4 ma	В
Per vite da 5 ma	С
Per vite da 6 ma	D
Per vite da 8 ma	Е
Per vite da 10 ma	F

FILETTO F	В
3 ma	Α
4 ma	В
5 ma	С
6 ma	D
8 ma	Е

MICROTERMOCOPPIE

CON CAVO IN PVC

TERMINAZIONE CAVO

Fili liberi

Connettore mignon maschio volante

Connettore mignon femmina volante P

Coppia di connettori mignon

D

0

S

Р

M

DATI TECNICI

- Temperatura di funzionamento: -50 .. 100 °C
- Precisione: secondo ANSI MC96.1/IEC 584

COLLEGAMENTI ELETTRICI

Termocoppie, tolleranza Gr II

Norme Ansi

TIPI DI GIUNTO

Isolato da massa

A massa

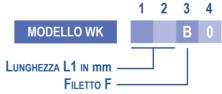
Esposto

Fili liberi, rispettare la polarità' durante il collegamento (verificare nella tabella dei codici colori)

2

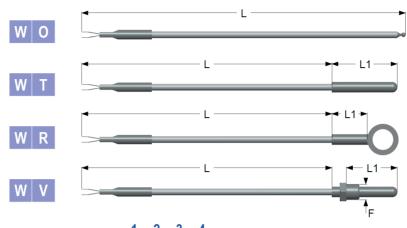
4

M


MODELLO WN

TIPO DI RONDELLA

2


3 4

B 0 0

FILETTO F	В
3 ma	Α
4 ma	В
5 ma	С
6 ma	D
8 ma	Е

CON CAVO IN ELETTROVETRO

MODELLO

2 3 4 MODELLO TIPO E CLASSE DI TOLLERANZA TIPO DI GIUNTO -LUNGHEZZA L IN cm -DIAMETRO CAVO -TERMINAZIONE CAVO -

TIPO E CLASSE DI TOLLERANZA		Α
	Т	Т
Termocoppie, tolleranza Gr I Norme Ansi	J	J
Norme And	K	K
	Т	1
Termocoppie, tolleranza Gr II Norme Ansi	J	2
	K	4
TIPI DI GIUNTO		В
Isolato da massa		1
A massa		M
Esposto		Е

DIMENSIONI CAVO	С
30 AWG	Α
28 AWG	В
24 AWG	С
TERMINAZIONE CAVO	D
Fili liberi	0
Connettore mignon maschio volante	S
Connettore mignon femmina volante P	Р
Coppia di connettori mignon	М

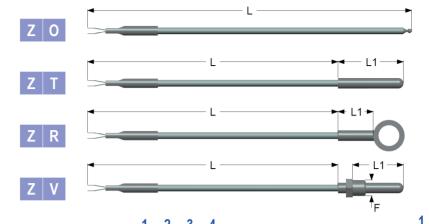
1.5 (cavo 30 AWG) 2 (cavo 28 AWG) 2.5 (cavo 24 AWG)	۸
,	А
2.5 (cayo 24 AWG)	В
2.0 (0010 2171110)	С
3 (cavo 30 AWG)	D

TIPO RONDELLA	Α
Rondella in rame	R
Rondella in inox	-1
DIAMETRO RONDELLA	В
Per vite da 3 ma	Α
Per vite da 4 ma	В
Per vite da 5 ma	С
Per vite da 6 ma	D
Per vite da 8 ma	Е
Per vite da 10 ma	F

FILETTO F	В
3 ma	Α
4 ma	В
5 ma	С
6 ma	D
8 ma	Е

DATI TECNICI

- Temperatura di funzionamento: -50 .. 400 °C
- Precisione: secondo ANSI MC96.1/IEC 584


COLLEGAMENTI ELETTRICI

Fili liberi, rispettare la polarità durante il collegamento (verificare nella tabella dei codici colori)

MICROTERMOCO

CON CAVO IN TEFLON

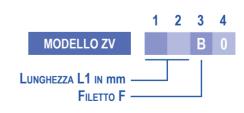
MODELLO

				 _	J	-	
MODELLO	Α	В	C				D
TIPO E CLASSE DI TOLLERANZA — TIPO DI GIUNTO — LUNGHEZZA L IN cm — DIAMETRO CAVO —							
TERMINAZIONE CAVO ————							

TIPO E CLASSE DI TOLLERANZA		Α
T	Т	Т
Termocoppie, tolleranza Gr I Norme Ansi	J	J
North C Artsi	K	K
	Т	1
Termocoppie, tolleranza Gr II Norme Ansi	J	2
	K	4
TIPI DI GIUNTO		В
Isolato da massa		-1
A massa		M
Esposto		Е

DIMENSIONI CAVO	С
30 AWG	Α
28 AWG	В
24 AWG	С
TERMINATIONS OANO	_
TERMINAZIONE CAVO	D
Fili liberi	0
Connettore mignon maschio volante	S
Connettore mignon femmina volante P	Р
Coppia di connettori mignon	M

MODELLO ZO 2 3 **MODELLO ZT DIAMETRO GUAINA**


LUNGHEZZA L1 IN mm

2 3

DIAMETRO GUAIN	IA (mm)		A	
1.5 (cavo 30 AW	/G)		Α	
2 (cavo 28 AW)	G)		В	
2.5 (cavo 24 AW	/G)		С	
3 (cavo 30 AW)	G)		D	
	1	2	3	4
MODELLO ZR	Α	В	0	0
	T			

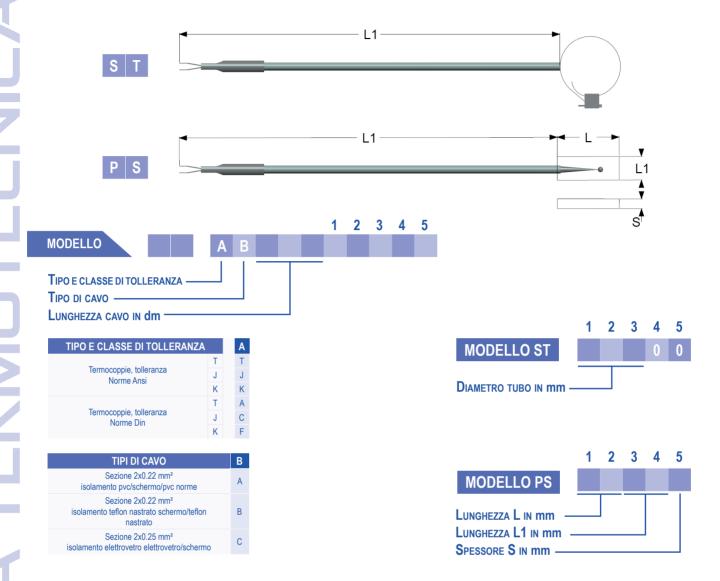
	l .		
TIPO DI RONDELLA	_		
DIAMETRO RONDELLA			

TIPO RONDELLA	Α
Rondella in rame	R
Rondella in inox	-1
DIAMETRO RONDELLA	В
DIAMETRO RONDELLA	В
Per vite da 3 ma	Α
Per vite da 4 ma	В
Per vite da 5 ma	С
Per vite da 6 ma	D
Per vite da 8 ma	Ε
Per vite da 10 ma	F

FILETTO F	В
3 ma	Α
4 ma	В
5 ma	С
6 ma	D
8 ma	Е

Esecuzioni speciali a richiesta

DATI TECNICI


- Temperatura di funzionamento: -50 .. 250 °C
- Precisione: secondo ANSI MC96.1/IEC 584

COLLEGAMENTI ELETTRICI

Fili liberi, rispettare la polarità' durante il collegamento (verificare nella tabella dei codici colori)

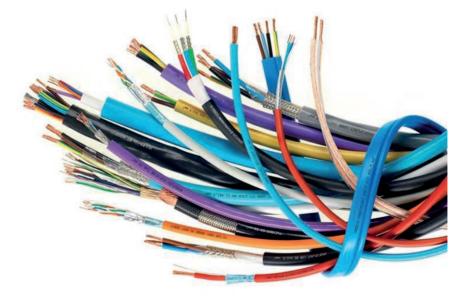
TERMOCOPPIE PER MISURE DI CONTATTO

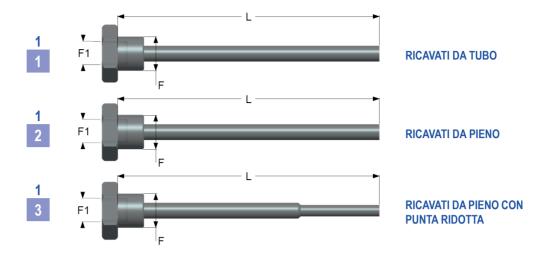
DATI TECNICI

- Temperatura di funzionamento, a seconda del cavo di collegamento: PVC 100 °C / teflon 250 °C / elettrovetro 400 °C
- Precisione: secondo ANSI MC96.1/IEC 584

COLLEGAMENTI ELETTRICI

Fili liberi, rispettare la polarità durante il collegamento (verificare nella tabella dei codici colori)




È sempre importante per il miglior risultato applicativo, abbinare alla sonda gli accessori più adatti. Per questo abbiamo sviluppato una sempre più vasta gamma di accessoristica, connettori, prolunghe, sistemi di fissaggio, convertitori, cavi etc. in modo da soddisfare sempre le esigenze connesse con l'affidabilità, la semplicità e la robustezza del sistema di misura.

In questa sezione:

- Raccordi
- Pozzetti
- Prolunghe
- Connettori
- Cavi

POZZETTI RICAVATI DA TUBO O DA BARRA

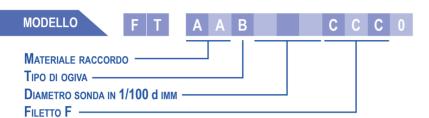
MODELLO P M A B C 0 0

FILETTI

DIAMETRO POZZETTO

LUNGHEZZA L IN mm

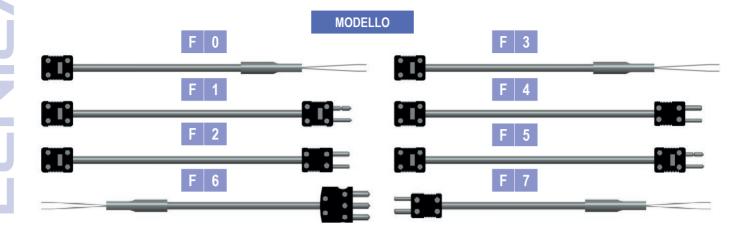
MATERIALE GUAINA


FIL	.ETTI	Α
Filetto F	Filetto F1	
1/4	1/8	Α
3/8	1/8	В
3/8	1/4	С
1/2	1/4	D
3/4	1/4	Е
1/2	3/8	F
3/4	3/8	G
3/4	1/2	Н
1/2	1/2	1

DIAMETROP	OZZETTO(MM)	B
Diametro esterno	Diametro interno	
6	5	Α
8	6	В
10	8	С
12	10	D
14	12	Е
16	13	F
20	17	G

MATERIALE GUAINA	С
Ottone	Α
Aisi 304	В
Aisi 316	С
Aisi 310	D
Inconel 600	Е

RACCORDI A COMPRESSIONE



MATERIALE RACCORDO	Α	Α
Ottone	0	Т
Ottone nichelato	0	N
Acciaio inox	1	N

MATERIALE OGIVA	В
Ottone	-1
Ottone nichelato	0
Acciaio inox	Т
Accaio	Α

FILETTO F(ATTACCO AL PROCESSO)	С	С	С
8 MA	8	М	Α
1/8 GAS	1	1	8
1/4 GAS	1	1	4
3/8 GAS	3	1	8
1/2 GAS	1	1	2
Diametro 8 liscio	0	8	L
Diametro 10 liscio	1	0	L

PROLUNGHE INTESTATE CON CONNETTORI

MODELLO		Α	В			0	0	0	0
TIPO E CLASSE DI TOI TIPO DI CAVO	LLERANZA -					•			
LUNGHEZZA CAVO IN	dm -								

TIPO E CLASSE DI TOLLERANZA			
Termocoppie Norme Ansi	Т		Т
	J		J
	Ε		Е
	K		K
	Ν		N
	S		S
	R		R

TIPI DI CAVO	В
Sezione 2x0.24 mm² isolamento pvc/schermo/pvc	Α
Sezione 2x0.22 mm² isolamento teflon nastrato schermo/teflon n	В
Sezione 2x0.22 mm² isolamento elettrovetro elettrovetro/ schermo	С
Sezione 2x0.22 mm² isolamento teflon/teflon	F
Sezione 2x0.19 mm² isoalmento vetro silicone/vetro silicone	G
Sezione 2x0.24 mm² isolamento teflon/teflon/schermo	Н
Sezione 2x0.24 mm² isolamento gomma silicone/gomma silicone	1
Sezione 2x0.05 mm² (30AWG) Isolamento vetro silicone/vetro silicone	M
Sezione 2x0.08 mm² (28AWG) Isolamento vetro silicone/vetro silicone	N

ACCESSORI CONNETTORI COMPENSATI

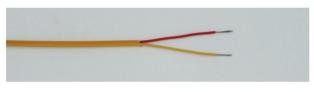
	CONNETTORE STANDARD MASCHI	IO VOLANTE PER TERMOCOPPIA
30 - 12.5	TIPO	CODICE
25.3	K	1F28SK1LB
	J	1F24SJ1LB
	S	1F33SS1LB
	Т	1F36ST1LB
	CONNETTORE STANDARD FEMMIN	IA VOLANTE PER TERMOCOPPIA
38 - 12.5 -	TIPO	CODICE
25.3	K	1F30SK2LB
	J	1F25SJ2LB
	S	1F34SS2LB
	Т	1F37ST2LB
27 - مين مين 19 مين 4 مين 19 مين مين العامل الع	CONNETTORE STANDARD FEMMINA DA PAN	NELLO (con mostrina) PER TERMOCOPPIA
	TIPO	CODICE
	K	1F32SK4LB
	J	1F27SJ4LB
	S	1F35SS4LB
	Т	1F39ST4LB
	CONNETTORE MIGNON MASCHIO) VOLANTE PER TERMOCOPPIA

	CONNETTORE MIGNON MASCHIO	O VOLANTE PER TERMOCOPPIA
20 - 8	TIPO	CODICE
16.5	K	1F12MK1LB
16.5	J	1F07MJ1LB
	S	1F17MS1LB
	Т	1F21MT1LB
	CONNETTORE MIGNON FEMMINA	A VOLANTE PER TERMOCOPPIA
26.5 - 9 - 8	TIPO	CODICE
16.5	K	1F13MK2LB
16.5	J	1F09MJ2LB
	S	1F18MS2LB
	Т	1F22MT2LB
	CONNETTORE MIGNON FEMMINA DA PAN	NELLO (con mostrina) PER TERMOCOPPIA
21-7-2-14-7	TIPO	CODICE
	K	1F16MK4LB
	J	1F11MJ4LB
W 1 <u> </u>	S	1F20MS4LB
	Т	1F23MT4LB

CONNETTORI COMPENSATI

	CONNETTORE STANDARD MAS	CHIO VOLANTE PER TERMOCOPPIA
33.5	TIPO	CODICE
	K	51SK1OM
25.5	J	71SJ10M
	S	73SS1OM
	T	50ST10M
		MINA VOLANTE PER TERMOCOPPIA
33.5 - 9 -9 12.5	TIPO	CODICE
	K	40SK2OM
25.5	J	72SJ2OM
	S	74SS2OM
	T	70ST2OM
		VOLANTE 3 CONTATTI PER TERMOCOPPIA
34 12.5	TIPO	CODICE
	K	063K1OM
36.5	J	473J10M
	S	473310M 773S10M
	T	773STOM 753T1OM
		/OLANTE 3 CONTATTI PER TERMOCOPPIA
34 12.5	TIPO	CODICE
	K	033K2OM
36.5	J	533J2OM
	S	783S2OM
	T	763T2OM
	l l	70312OW
	CONNETTORE MIGNON MASC	HIO VOLANTE PER TERMOCOPPIA
- 20.5 8	CONNETTORE MIGNON MASC	HIO VOLANTE PER TERMOCOPPIA CODICE
16.5	TIPO	CODICE
	TIPO K	CODICE 52MK1OM
16.5	TIPO K J	CODICE 52MK1OM 64MJ1OM
16.5	TIPO K J S T	CODICE 52MK1OM 64MJ1OM 68MS1OM
16.5	TIPO K J S T	CODICE 52MK1OM 64MJ1OM 68MS1OM 66MT1OM
16.5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	TIPO K J S T CONNETTORE MIGNON FEMM	CODICE 52MK10M 64MJ10M 68MS10M 66MT10M
16.5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	TIPO K J S T CONNETTORE MIGNON FEMM TIPO	CODICE 52MK10M 64MJ10M 68MS10M 66MT10M IINA VOLANTE PER TERMOCOPPIA CODICE
16.5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	TIPO K J S T CONNETTORE MIGNON FEMM TIPO K	CODICE 52MK10M 64MJ10M 68MS10M 66MT10M IINA VOLANTE PER TERMOCOPPIA CODICE 57MK20M
16.5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	TIPO K J S T CONNETTORE MIGNON FEMM TIPO K J	CODICE 52MK10M 64MJ10M 68MS10M 66MT10M IINA VOLANTE PER TERMOCOPPIA CODICE 57MK20M 65MJ20M
16.5	TIPO K J S T CONNETTORE MIGNON FEMM TIPO K J S T	CODICE 52MK10M 64MJ10M 68MS10M 66MT10M IINA VOLANTE PER TERMOCOPPIA CODICE 57MK20M 65MJ20M 69MS20M
16.5	TIPO K J S T CONNETTORE MIGNON FEMM TIPO K J S T	CODICE 52MK10M 64MJ10M 68MS10M 66MT10M IINA VOLANTE PER TERMOCOPPIA CODICE 57MK20M 65MJ20M 69MS20M 67MT20M
16.5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	TIPO K J S T CONNETTORE MIGNON FEMM TIPO K J S T CONNETTORE MIGNON FEMMINA VO	CODICE 52MK10M 64MJ10M 68MS10M 66MT10M IINA VOLANTE PER TERMOCOPPIA CODICE 57MK20M 65MJ20M 69MS20M 67MT20M DLANTE 3 CONTATTI PER TERMOCOPPIA
16.5	TIPO K J S T CONNETTORE MIGNON FEMM TIPO K J S T CONNETTORE MIGNON FEMMINA VO	CODICE 52MK10M 64MJ10M 68MS10M 66MT10M IIINA VOLANTE PER TERMOCOPPIA CODICE 57MK20M 65MJ20M 69MS20M 67MT20M DLANTE 3 CONTATTI PER TERMOCOPPIA
16.5	TIPO K J S T CONNETTORE MIGNON FEMM TIPO K J S T CONNETTORE MIGNON FEMMINA VO TIPO K	CODICE 52MK10M 64MJ10M 68MS10M 66MT10M IINA VOLANTE PER TERMOCOPPIA CODICE 57MK20M 65MJ20M 69MS20M 67MT20M DLANTE 3 CONTATTI PER TERMOCOPPIA CODICE 79CK10M
16.5	TIPO K J S T CONNETTORE MIGNON FEMM TIPO K J S T CONNETTORE MIGNON FEMMINA VO TIPO K J S T CONNETTORE MIGNON FEMMINA VO TIPO K J	CODICE 52MK10M 64MJ10M 68MS10M 66MT10M IINA VOLANTE PER TERMOCOPPIA CODICE 57MK20M 65MJ20M 69MS20M 67MT20M DLANTE 3 CONTATTI PER TERMOCOPPIA CODICE 79CK10M 81CJ10M
16.5	TIPO K J S T CONNETTORE MIGNON FEMM TIPO K J S T CONNETTORE MIGNON FEMMINA VO TIPO K J S T CONNETTORE MIGNON FEMMINA VO TIPO K J S T S T	CODICE 52MK10M 64MJ10M 68MS10M 66MT10M IIINA VOLANTE PER TERMOCOPPIA CODICE 57MK20M 65MJ20M 69MS20M 67MT20M DLANTE 3 CONTATTI PER TERMOCOPPIA CODICE 79CK10M 81CJ10M 85CS10M
25.5 8 16.5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	TIPO K J S T CONNETTORE MIGNON FEMM TIPO K J S T CONNETTORE MIGNON FEMMINA VO TIPO K J S T CONNETTORE MIGNON FEMMINA VO TIPO K J S T S T	CODICE 52MK10M 64MJ10M 68MS10M 66MT10M IINA VOLANTE PER TERMOCOPPIA CODICE 57MK20M 65MJ20M 69MS20M 67MT20M DLANTE 3 CONTATTI PER TERMOCOPPIA CODICE 79CK10M 81CJ10M 85CS10M 83CT10M
25.5 8 16.5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	TIPO K J S T CONNETTORE MIGNON FEMM TIPO K J S T CONNETTORE MIGNON FEMMINA VO TIPO K J S T CONNETTORE MIGNON FEMMINA VO TIPO K J S T CONNETTORE MIGNON FEMMINA VO	CODICE 52MK10M 64MJ10M 68MS10M 66MT10M IINA VOLANTE PER TERMOCOPPIA CODICE 57MK20M 65MJ20M 69MS20M 67MT20M DLANTE 3 CONTATTI PER TERMOCOPPIA CODICE 79CK10M 81CJ10M 85CS10M 83CT10M
16.5	TIPO K J S T CONNETTORE MIGNON FEMM TIPO K J S T CONNETTORE MIGNON FEMMINA VO TIPO K J S T CONNETTORE MIGNON FEMMINA VO TIPO K TIPO K TIPO K TIPO K TIPO K TIPO TIPO K TIPO TIPO	CODICE 52MK10M 64MJ10M 68MS10M 66MT10M IINA VOLANTE PER TERMOCOPPIA CODICE 57MK20M 65MJ20M 69MS20M 67MT20M DLANTE 3 CONTATTI PER TERMOCOPPIA CODICE 79CK10M 81CJ10M 85CS10M 83CT10M DLANTE 3 CONTATTI PER TERMOCOPPIA CODICE
25.5 8 16.5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	TIPO K J S T CONNETTORE MIGNON FEMM TIPO K J S T CONNETTORE MIGNON FEMMINA VO TIPO K J S T CONNETTORE MIGNON FEMMINA VO TIPO K J S T	CODICE 52MK10M 64MJ10M 68MS10M 66MT10M IINA VOLANTE PER TERMOCOPPIA CODICE 57MK20M 65MJ20M 69MS20M 67MT20M DLANTE 3 CONTATTI PER TERMOCOPPIA CODICE 79CK10M 81CJ10M 85CS10M 83CT10M DLANTE 3 CONTATTI PER TERMOCOPPIA CODICE 80CK10M
25.5 8 16.5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	TIPO K J S T CONNETTORE MIGNON FEMM TIPO K J S T CONNETTORE MIGNON FEMMINA VO TIPO K J S T CONNETTORE MIGNON FEMMINA VO TIPO K J S T CONNETTORE MIGNON FEMMINA VO TIPO K J S T	CODICE 52MK10M 64MJ10M 68MS10M 66MT10M IINA VOLANTE PER TERMOCOPPIA CODICE 57MK20M 65MJ20M 69MS20M 67MT20M DLANTE 3 CONTATTI PER TERMOCOPPIA CODICE 79CK10M 81CJ10M 85CS10M 83CT10M DLANTE 3 CONTATTI PER TERMOCOPPIA CODICE 80CK10M 82CJ10M

ACCESSORI CAVIDI COMPENSAZIONE


TIPO DI ISOLAMENTO	TEMPERATURA DI LAVORO	RESISTENZA ALL'ABRASIONE	FLESSIBILITA'	RESISTENZA ALL'ACQUA	RESISTENZA ALL'UMIDITA	DISPONIBILE PER TERMOCOPPIE	DISPONIBILE PER TERMORESISTENZE
Teflon/Teflon o Teflon/Teflon/Schermo	70 +250 °C	Eccellente	Buona	Eccellente	Eccellente	SI	SI
Gomma sili./Gomma sil. o Gomma sil./Gomma sil./Schermo	50 +200 °C	Media	Buona	Buona	Buona	SI	SI
PVC/PVC o PVC/PVC/Schermo	50 +105 °C	Buona	Eccellente	Buona	Buona	SI	SI
Elettrovetro/Elettrovetro/Schermo	30 +400 °C	Scarsa	Buona	Scarsa	Scarsa	SI	SI
Elettrovetro/Elettrovetro	60 +400 °C	Scarsa	Buona	Scarsa	Scarsa	SI	NO

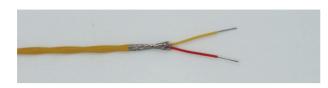
CAVI CON ISOLAMENTO IN TEFLON

- Ottima resistenza agli agenti chimici ed atmosferici
- Elevata resistenza alle alte temperature
- Elevata resistenza all'abrasione anche a temperature elevate
- Ininfiammabilità
- Campo di lavoro -70 .. +250 °C

CONSIDERAZIONI GENERALI

L' impiego di fluoropolimeri (teflon) nell'isolamento di cavi permette di ottenere un prodotto finale di eccellenti prestazioni, mantenute in un ampio range di temperatura e con caratteristiche fisiche praticamente invariate. La resistenza meccanica, elettrica ed agli agenti chimici, ne consente l'utilizzo in condizioni altrimenti non compatibili con la maggioranza dei cavi convenzionali.

Isolamento primario in teflon Isolamento secondario in teflon Colorazione a norme ANSI MC96.1


TIPO	DIM.	SEZIONE	CODICE ORDINE	DESCRIZIONE	MATASSA (MT.)		
J	3,2x1,8	2x0,35	05 09EBRO 0PS	Cavo J ANSI 2x0,35 Tfe-Tfe	300		
J	2,7x1,6	24 AWG	05 AIF2FO 0PW	Cavo J ANSI special 24 AWG Tfe-Tfe	100/300		
J	1,4x0,8	30 AWG	05 91F2AO 0PW	Cavo J ANSI special 30AWG Tfe- Tfe	100/300		
K	3,2x1,8	2x0,34	05 74NBRO 0PS	Cavo K ANSI 2x0,35 Tfe-Tfe	300		
K	2,7x1,6	24 AWG	05 B7O 2FO 0PW	Cavo K ANSI special 24 AWG Tfe-Tfe	100/300		
K	3,2x1,8	30 AWG	05 650 2AO 0PW	Cavo K ANSI special 30AWG Tfe-Tfe	100/300		
	Cavi disponibili come modelli standard, esecuzioni speciali a richiesta						

Isolamento primario in teflon Isolamento secondario in teflon Schermo in calza di rame stagnato Colorazione a norme ANSI MC96.1

TIPO	DIM.	SEZIONE	CODICE ORDINE	DESCRIZIONE	MATASSA (MT.)		
J	3x2	2x0,24	05 79EBIQ1PS	Cavo J ANSI 2x0,24 Tfe-Tfe-Sch	300		
K	3x2	2x2,24	05 80NBIQ1PS	Cavo K ANSI 2x0,24 Tfe-Tfe-Sch	300		
Cavi disponibili come modelli standard, esecuzioni speciali a richiesta							

ACCESSORI CAVI CON ISOLAMENTO IN TEFLON

Isolamento primario in teflon Schermo in calza di rame stagnato Isolamento secondario in teflon Colorazione a norme ANSI MC96.1

TIPO	DIM.	SEZIONE	CODICE ORDINE	DESCRIZIONE	MATASSA (MT.)		
J	d. 3,2	2x0,24	05 AFEBIP1TS	Cavo J ANSI 2x0,24 Tfe-Sch-Tfe	300		
K	d. 3,2	2x2,24	05 95NBIP1TS	Cavo K ANSI 2x0,24 Tfe-Sch-Tfe	300		
Cavi disponibili come modelli standard, esecuzioni speciali a richiesta							

Isolamento primario in teflon Alluminio nastrato, Nylon nastrato Schermo in calza di rame Stagnato isoalmento secondario in teflon Colorazione a norme ANSI MC96.1

TIPO	DIM.	SEZIONE	CODICE ORDINE	DESCRIZIONE	MATASSA (MT.)		
K	d. 3,5	2x0,24	05 ATOBIP7TS	Cavo J ANSI 2x0,24 Tfe-Sch-Tfe	300		
Cavi disponibili come modelli standard, esecuzioni speciali a richiesta.							

CAVI CON ISOLAMENTO IN ELETTROVETRO

- Elevata resistenza alle alte temperature
- Peso e ingombro contenuti
- Disponibili anche con schermatura
- Ininfiammabilità
- Campo di lavoro -30 .. +400 °C

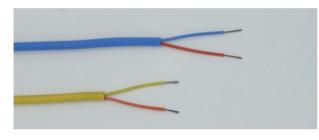
CONSIDERAZIONI GENERALI

I cavi con isolamento in calza di elettrovetro, garantiscono una ottima resistenza alle alte temperature potendo lavorare in condizioni normali a 400 °C e per brevi periodi, o in condizioni statiche fino a 500 °C. Non potendo garantire una eccellente resistenza all'abrasione, per particolari applicazioni è possibile scegliere i modelli con calza di protezione in materiale metallico.

Isolamento primario in elettrovetro Isolamento secondario in elettrovetro Schermo in calza di rame stagnato Colorazione a norme ANSI MC96.1/ DIN 43710

TIPO	DIM.	SEZIONE	CODICE ORDINE	DESCRIZIONE	MATASSA (MT.)	
J	d. 3,2	2x0,25	05 14DBJM1TS	Cavo J DIN 2x0,25 V.sil-V.sil-Sch	300	
J	d. 4	2x0,50	05 72DBLM1TS	Cavo J DIN 2x0,50 V.sil-V.sil-Sch	300	
K	d. 3,2	2x0,25	05 59NBJM1TS	Cavo K ANSI 2x0,25 V.sil-V.sil-Sch	300	
K	d. 4	2x0,50	05 61NBLM1TS	Cavo K ANSI 2x0,50 V.sil-V.sil-Sch	300	
Cavi disponibili come modelli standard, esecuzioni speciali a richiesta						

Isolamento primario elettrovetro Isolamento secondario elettrovetro Schermo in calza di rame stagnato Colorazione a norme ANSI MC96,1


TIPO	DIM.	SEZIONE	CODICE ORDINE	DESCRIZIONE	MATASSA (MT.)	
J	3x2	2x0,35	05 11EBFI0PS	Cavo J ANSI 2x0,19 V.sil-V.sil	300	
J	1,8x1,2	24 AWG	05 24E2FI0PW	Cavo J ANSI 24 AWG V.sil-V.sil	100/300	
J	1,2x0,9	30 AWG	05 66F2AI0PW	Cavo J ANSI 30AWG V.sil-V.sil	100/300	
K	3,2x1,8	2x0,34	05 50N2FI0PS	Cavo K ANSI 2x0,19 V.sil-V.sil	300	
K	2,7x1,6	24 AWG	05 49N2FI0PW	Cavo K ANSI 24 AWG V.sil-V.sil	100/300	
K	3,2x1,8	30 AWG	05 64O 2AI0PW	Cavo K ANSI 30AWG V.sil-V.sil	100/300	
Cavi disponibili come modelli standard, esecuzioni speciali a richiesta						

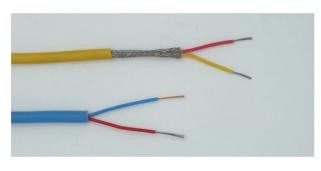
CAVI CON ISOLAMENTO IN GOMMA SILICONICA

- Ottima flessibilità
- Buona resistenza all'abrasione
- Compatibilità con applicazioni HVAC
- Autoestinguente
- Campo di lavoro -50 .. +200 °C

CONSIDERAZIONI GENERALI

I cavi con isolamento in gomma siliconica possono essere utilizzati in applicazioni ad alta temperatura, con utilizzo continuo fino a 180-200 °C. Buona resistenza ed elevata flessibilità, sono ancora riscontrabili a temperature intorno a -50 °C mentre a temperature più basse, insorgono fenomeni di infragilimento ed irrigidimento. Discreta anche la resistenza agli agenti chimici, ad eccezione di acidi, alcali ed idrocarburi.

Isolamento primario in gomma siliconica Isolamento secondario in gomma siliconica Colorazione a norme ANSI MC96.1/ DIN 43710

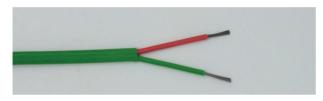

TIPO	DIM.	SEZIONE	CODICE ORDINE	DESCRIZIONE	MATASSA (MT.)		
J	d. 4,2	2x0,24	05 12DBIE0TS	Cavo J DIN 2x0,24 G.sil-G.sil	300		
K	d. 4,2	2x0,24	05 70NBIE0TS	Cavo K ANSI 2x0,24 G.sil-G.sil	300		
Cavi disponibili come modelli standard, esecuzioni speciali a richiesta							

- · Buona flessibilità
- Buona resistenza all'abrasione
- Autoestinguente
- Campo di lavoro -50 .. +105 °C

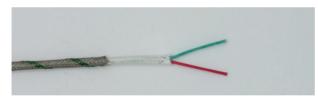
CONSIDERAZIONI GENERALI

I cavi con isolamento in PVC (polivinilcloruro), rappresentano la soluzione ideale, in quasi tutte le applicazioni per la realizzazione di cablaggi in condizioni normali. Nonostante tutto, il PVC garantisce comunque medie performances per ciò che riguarda la resistenza ad agenti chimici ed ambientali unite ad una buona resistenza meccanica ed alla abrasione.

Isolamento primario in PVC
Calza in rame stagnato
Isolamento secondario in PVC
Colorazione a norme ANSI MC96.1


TIPO	DIM.	SEZIONE	CODICE ORDINE	DESCRIZIONE	MATASSA (MT.)
J	d. 4,2	2x0,24	05 132EBIC1TS	Cavo J ANSI 2x0,24 PVC-Sch-PVC	300
J	d. 4,2	2x0,24	05 57NBIC1TS	Cavo K ANSI 2x0,24 PVC-Sch-PVC	300
Cavi disponibili come modelli standard, esecuzioni speciali a richiesta					

- Per l'esecuzione di lunghe linee di cablaggio
- Disponibili per TC tipo J,K,R,S,B


CONSIDERAZIONI GENERALI

I cavi di compensazione, sono cavi per il collegamento di sensori a termocoppia, e pur non utilizzando le leghe costituenti le coppie termoelettriche di ciascun tipo di termocoppia, garantiscono una buona trasmissione del segnale.

Isolamento primario in PVC isolamento secondario in PVC Colorazione a norme DIN 43710

TIPO	DIM.	SEZIONE	CODICE ORDINE	DESCRIZIONE	MATASSA (MT.)
JX	7x4	2x1,3	06 ARDBOBOPS	Cavo di compensazione JX DIN 2x1,3 PVC-PVC	300
WX	7x4	2x1,3	06 04ZBOB0PS	Cavo di compensazione WX DIN 2x1,3 PVC-PVC	300
Cavi disponibili come modelli standard, esecuzioni speciali a richiesta					

Isolamento primario in elettrovetro isolamento secondario in elettrovetro calza in rame stagnato.

Colorazione a norme DIN 43710

TIPO	DIM.	SEZIONE	CODICE ORDINE	DESCRIZIONE	MATASSA (MT.)
WX	d. 4,1	2x0,50	06 06ZBLM1TS	Cavo di compensazione WX DIN 2x0,5 V.sil-V.sil-Sch	300
S/R/B X	4,2x2,9	2x1	06 02QBNM1PS	Cavo di compensazione SX ANSI 2x1 V.sil-V.sil.Sch	300
Cavi disponibili come modelli standard, esecuzioni speciali a richiesta					

CONVERTITORI/TRASMETTITORI DI TEMPERATURA

- Ingressi per RTD, TC, mV, V, mA ...
- Uscite in corrente e tensione
- Isolamento galvanico
- Massima configurabilità anche tramite PC
- Elevata precisione e stabilità
- Compatibilità elettromagnetica (marcatura CE)
- Disponibili in versione da testa o da binario DIN
- Fornibili senza sovrapprezzo, in versione preconfigurata secondo specifiche esigenze

CONVERTITORI/TRASMETTITORI DI TEMPERATURA

CARATTERISTICHE

- Ingresso configurabile per RTD, mV, Resistenza e Potenziometro
- Funzione di damping su uscita
- Uscita configurabile in Corrente da 4 a 20 mA
- Configurabile da Personal Computer mediante apposito cavo CVPROG.
- Elevata precisione
- Riconfigurabile in campo
- EMC conforme Marchio CE
- Adatto al montaggio in testa DIN B
- Opzione per montaggio su binario DIN 50022 (Opzione DIN RAIL)

DAT 1010 Trasmettitore per RTD configurabile da Personal Computer

DESCRIZIONE GENERALE

Il trasmettitore DAT 1010 è in grado di svolgere svariate funzioni quali: misura e linearizzazione della caratteristica di temperatura con sonde a RTD, conversione di una variazione lineare di resistenza, conversione di un segnale di tensione, anche proveniente da un potenziometro connesso al suo ingresso. I valori misurati vengono trasmessi sul loop di corrente 4÷20 mA. Il dispositivo garantisce una elevata precisione ed una misura molto stabile sia nel tempo che in temperatura. Nel caso in cui si presenti la necessità di utilizzare un sensore con una caratteristica di uscita non standard è possibile esequire, via software, una linearizzazione "Custom" (per punti) in modo da ottenere in uscita un segnale linearizzato. Per le sonde RTD e Resistenza è possibile effettuare la compensazione del cavo con connessione a tre o quattro fili e impostare i valori di inizio e fondo scala delle misure di ingresso ed uscita in qualsiasi punto della scala. E' inoltre disponibile l' opzione di allarme sensore interrotto con impostazione del valore di uscita come fuori scala alto o fuori scala basso. Sul dispositivo è prevista la funzione di damping, ovvero la possibilità di inserire un filtro programmabile fino a 30 secondi per ridurre le eventuali repentine variazioni del segnale di ingresso. Il trasmettitore DAT 1010 è alloggiato in un contenitore in materiale plastico auto-estinguente adatto al montaggio diretto nella testa della sonda. E' inoltre possibile (tramite apposito kit di montaggio) montare il dispositivo su binario DIN.

PROGRAMMAZIONE

La programmazione avviene tramite Personal Computer attraverso il programma di configurazione PROSOFT, sviluppato da DATEXEL ed operante su sistema operativo "WindowsTM" con il quale è possibile configurare il trasmettitore per poterlo interfacciare con i sensori più usati. La procedura di programmazione può essere eseguita interfacciando il trasmettitore al Personal Computer, mediante l'apposito cavo CVPROG fornito da DATEXEL, senza che esso debba essere collegato ad un alimentatore esterno

ISTRUZIONI DI IMPIEGO

Il trasmettitore DAT1010 deve essere alimentato con una tensione continua compresa tra i valori di 10 e 32 V che deve essere applicata tra i terminali +V e -V. Il segnale di uscita 4÷20 mA è misurabile in serie al loop di alimentazione come illustrato nella sezione "Collegamenti lato uscita/alimentazione"; il carico Rload rappresenta la strumentazione posta in serie al loop di corrente; per una corretta misura si raccomanda che il massimo valore di Rload sia calcolato in funzione del valore della tensione applicata (vedasi sezione "Specifiche Tecniche - Caratteristica di carico"). Le connessioni di ingresso devono essere effettuate in base a quanto indicato nella sezione "Collegamenti lato ingresso". Per la fase di configurazione, calibrazione e le modalità di installazione del trasmettitore fare riferimento alle sezioni "Configurazione e calibrazione DAT1010 " e "Istruzioni per l'installazione".

SPECIFICHE TECNICHE (Tipiche a 25 °C e nelle condizioni nominali)

Tipo di ingressi	Min	Max	Span min
RTD(*) 2,3,4 fili			
Pt100	-200°C	850°C	50°C
Pt1000	-200°C	200°C	50°C
Ni100	-60°C	180°C	50°C
Ni1000	-60°C	150°C	50°C
Tensione			
mV	-100mV	+700mv	2mV
Potenziometro			
(Valore	0Ω	200Ω	10%
nominale)	200Ω	500Ω	10%
	$0.5 \text{K}\Omega$	50KΩ	10%
RES. 2,3,4 fili			
Basso	Ω 0	300Ω	10Ω
Alto	0Ω	2000Ω	200Ω
Tipo di usicta	Min	Max	Span min
Corrente diretta	4mA	20mA	4mA
Reverse current	20mA	4mA	4mA

Calibrazione ingre	SSI (1)		
RTD	> di ±0.1% f.s. e ±0.2°C		
Res. Basso	$> di \pm 0.1\%$ f.s. $e \pm 0.15 \Omega$		
Res. Alto	$>$ di $\pm 0.2\%$ f.s. e $\pm 1~\Omega$		
mV	> di ±0.1% f.s. e ±18 uV		
Calibrazione usicta			

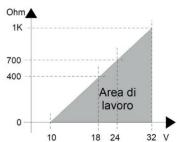
Corrente + 7 uA Impendenza di ingresso >= 10 MΩ Linearità (1)

± 0.1 % f.s. Influenza della R di linea (1) <=0.8 uV/Ohm RTD 3 fili $0.05\%/\Omega$

(50 Ω max bilanciati) RTD 4 fili $0.005\%/\Omega$ (100 Ω max bilanciati)

Corrente di eccitazione RTD 0.350 mA Tipico Deriva termica (1)

Fondo scala ± 0.01% / °C Valori di fuori scala


Valore max. uscita 20.5 mA circa Valore min. uscita 3,8 mA circa Valore max. fault 21,6 mA circa Valore min. fault 3.5 mA circa Costante di tempo Damping Selezionabile da 0,3 a 30 secondi Valore 0: funzione non attiva.

(1) riferiti allo Span di ingresso (differenza tra Val. max. e Val. min.)

Tempo di risposta (10÷ 90%) 400 ms circa Alimentazione

Tensione di alimentazione 10 .. 32 Vcc Protezione invers. Polarità 60 Vcc max

Caratteristica di carico - Rload (carico in serie al loop di ingresso in funzione della tensione di alimentazione del loop

PC + ABS V0

50 g. circa

In testa DIN B o maggiore

Ø = 43 mm ; H = 24 mm

Temperatura e Umidità

-40°C .. +85°C Temperatura operativa Temp. di immagazzinaggio -40°C .. +85°C 0..90% Umidità (senza condensa)

Contenitore Materiale Montaggio

Peso Dimensioni

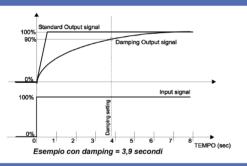
EMC (per ambienti industriali) Immunità

EN 61000-6-2 Emissione EN 61000-6-4

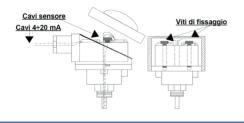
CONVERTITORI/TRASMETTITORI DI TEMPERATURA

CONFIGURAZIONE E CALIBRAZIONE DAT 1010

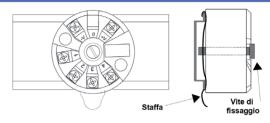
Attenzione, prima di eseguire questa operazione, verificare che i driver del cavo CVPROG in uso siano stati precedentemente installati sul Personal Computer.

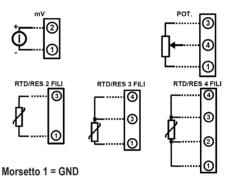

- CONFIGURAZIONE CON APPOSITO CAVO USB CVPROG

- 1) Rimuovere il coperchio plastico di protezione sul DAT 1010.
- 2)Collegare II cavo CVPROG (Lato USB) al Personal Computer ed al dispositivo mediante connettore micro USB
- 3) Aprire il programma di configurazione PROSOFT. Impostare la porta COM assegnata dal sistema operativo al cavo CVPROG.
- 4) Impostare i dati di programmazione.
- 5) Inviare i dati di programmazione al dispositivo.

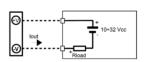

PROGRAMMAZIONE DAT1010 CON CAVO CVPROG

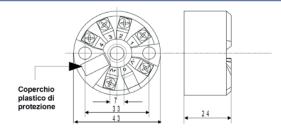
FUNZIONE DAMPING


MONTAGGIO IN TESTA PER SONDA DIN B


ISTRUZIONI PER L'INSTALLAZIONE

Il dispositivo DAT1010 è adatto al montaggio diretto nella testa della sonda DIN B, al cui interno deve essere fissato tramite le viti in dotazione. Tramite apposita staffa, fornita su richiesta, è inoltre possibile montare il dispositivo su binario DIN 50022. Occorre installare il dispositivo in un luogo non sottoposto a vibrazioni evitando di far passare il cablaggio in prossimità di cavi per segnali di potenza.


MONTAGGIO SU BINARIO DIN (OPZIONE DIN RAIL)


COLLEGAMENTI DAT1010 COLLEGAMENTI LATO INGRESSO

COLLEGAMENTI LATO USCITA/ALIMENTAZIONE

DIMENSIONI MECCANICHE (mm)

COME ORDINARE

Il DAT1010 viene fornito nella configurazione richiesta dal cliente in fase di ordine. Nel caso in cui la configurazione del dispositivo non sia specificata, i parametri di funzionamento saranno da impostare a cura dell' utilizzatore. Fare riferimento alla sezione "Specifiche Tecniche" per i campi scala di ingresso ed uscita. Il kit di montaggio per binario DIN viene fornito solo su richiesta con codice DIN RAIL.

ESEMPIO DI CODICE D' ORDINE:

Datexel s.r.l. si riserva il diritto di modificare in tutto o in parte le caratteristiche dei propri prodotti senza alcun preavviso ed in ogni momento

CARATTERISTICHE

- Ingresso configurabile per RTD, TC, mV, Resistenza e Potenziometro
- Funzione di damping su uscita
- Uscita configurabile in Corrente da 4 a 20 mA
- Configurabile da Personal Computer mediante apposito cavo CVPROG
- Elevata precisione
- Riconfigurabile in campo
- EMC conforme Marchio CE
- Adatto al montaggio in testa DIN B
- Opzione per montaggio su binario DIN 50022 (Opzione DIN RAIL)

DAT 1015 Trasmettitore universale configurabile da PersonalComputer

DESCRIZIONE GENERALE

Il trasmettitore DAT1015 è in grado di svolgere svariate funzioni quali: misura e linearizzazione della caratteristica di temperatura con sonde a RTD, conversione di una variazione lineare di resistenza, conversione di un segnale di tensione, anche proveniente da un potenziometro connesso al suo ingresso; il DAT 1015 è inoltre in grado di misurare e linearizzare le termocoppie standard effettuando al proprio interno la compensazione del giunto freddo. I valori misurati vengono trasmessi sul loop di corrente 4÷20 mA. Il dispositivo garantisce una elevata precisione ed una misura molto stabile sia nel tempo che in temperatura. Nel caso in cui si presenti la necessità di utilizzare un sensore con una caratteristica di uscita non standard è possibile eseguire, via software, una linearizzazione "Custom" (per punti) in modo da ottenere in uscita un segnale linearizzato. Per le sonde RTD e Resistenza è possibile effettuare la compensazione del cavo con connessione a tre o quattro fili, mentre per le sonde a Termocoppia si ha la possibilità di impostare la compensazione del giunto freddo (CJC) come interna od esterna. El possibile impostare i valori di inizio e fondo scala delle misure di ingresso ed uscita in qualsiasi punto della scala. E' inoltre disponibile l' opzione di allarme sensore interrotto con impostazione del valore di uscita come fuori scala alto o fuori scala basso. Sul dispositivo è prevista la funzione di damping, ovvero la possibilità di inserire un filtro programmabile fino a 30 secondi per ridurre le eventuali repentine variazioni del segnale di ingresso. Il trasmettitore DAT 1015 è alloggiato in un contenitore in materiale plastico auto-estinguente adatto al montaggio diretto nella testa della sonda. E' inoltre possibile (tramite apposito kit di montaggio) montare il dispositivo su binario DIN.

PROGRAMMAZIONE

La programmazione avviene tramite Personal Computer attraverso il programma di configurazione PROSOFT, sviluppato da DATEXEL ed operante su sistema operativo "WindowsTM" con il quale è possibile configurare il trasmettitore per poterlo interfacciare con i sensori più usati. La procedura di programmazione può essere eseguita interfacciando il trasmettitore al Personal Computer, mediante l'apposito cavo CVPROG fornito da DATEXEL, senza che esso debba essere collegato ad un alimentatore esterno

ISTRUZIONI DI IMPIEGO

Il trasmettitore DAT1015 deve essere alimentato con una tensione continua compresa tra i valori di 10 e 32 V che deve essere applicata tra i terminali +V e -V. Il segnale di uscita 4÷20 mA è misurabile in serie al loop di alimentazione come illustrato nella sezione "Collegamenti lato uscita/alimentazione"; il carico Rload rappresenta la strumentazione posta in serie al loop di corrente; per una corretta misura si raccomanda che il massimo valore di Rload sia calcolato in funzione del valore della tensione applicata (vedasi sezione "Specifiche Tecniche - Caratteristica di carico"). Le connessioni di ingresso devono essere effettuate in base a quanto indicato nella sezione "Collegamenti lato ingresso". Per la fase di configurazione, calibrazione e le modalità di installazione del trasmettitore fare riferimento alle sezioni "Configurazione e calibrazione DAT1015 "e "Istruzioni per l' installazione"

> di ±0.1% f.s. e ±0.2°C

SPECIFICHE TECNICHE (Tipiche a 25 °C e nelle condizioni nominali)

Tipo di ingressi TC(*) CJC int./est.	Min	Max	Span min	Calibrazione ingressi (1) RTD > di ±0
J	20000	100000	400.00	Res. Basso > di ±0
K	-200°C	1200°C	100 °C	Res. Alto > di ±0
S	-200°C	1370°C	100 °C	mV,TC > di ±0
R	-50°C	1760°C	400 °C	Calibrazione usicta
	-50°C	1760°C	400 °C	Corrente ± 7 u/
В	400°C	1820°C	400 °C	Impendenza di ingresso
E	-200°C	1000°C	100 °C	mV >= 10
T	-200°C	400°C	100 °C	Linearità (1)
N	-200°C	1300°C	100 °C	TC ± 0.2 %
DTD(*) 0.0.4 CU				RTD ± 0.1 %
RTD(*) 2,3,4 fili	-200°C	850°C	50°C	Influenza della R di linea
Pt100	-200°C	200°C	50°C	mV <=0.8
Pt1000	-60°C	180°C	50°C	RTD 3 fili 0.05%
Ni100	-60°C	150°C	50°C	(50 Ω
Ni1000	-00 C	150 C	30 C	RTD 4 fili 0.005%
Tensione				(100 Ω
mV	-100mV	+700mv	2mV	Corrente di eccitazione R
Potenziometro				Tipico 0.350 i
(Valore nominale)	0Ω	200Ω	10%	Comp. CJC $\pm 0.5^{\circ}$
(valore norminale)	200Ω	500Ω	10%	Deriva termica (1)
				Fondo scala ± 0.01
DEC 0045E	0.5 KΩ	50KΩ	10%	CJC ± 0,01
RES. 2,3,4 fili Basso	0Ω	300Ω	10Ω	Valori di fuori scala
				Valore max. uscita 20,5 m
Alto	0Ω	2000Ω	200Ω	Valore min. uscita 3,8 mA
Tipo di usicta	Min	Max	Span min	Valore max. fault 21,6 m
Corrente diretta	4mA	20mA	4mA	Valore min. fault 3,5 mA
Reverse current	20mA	4mA	4mA	Costante di tempo Damp

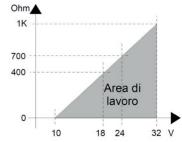
Res. Basso	$> di \pm 0.1\% f.s. e \pm 0.15 \Omega$
Res. Alto	$>$ di $\pm 0.2\%$ f.s. e $\pm 1~\Omega$
mV,TC	> di ±0.1% f.s. e ±18 uV
Calibrazione usione	cta
Corrente	± 7 uA
Impendenza di ir	ngresso
mV	>= 10 MΩ
Linearità (1)	
TC	± 0.2 % f.s.
RTD	± 0.1 % f.s.

nza della R di linea (1) <=0.8 uV/Ohm fili $0.05\%/\Omega$ (50 Ω max bilanciati) fili $0.005\%/\Omega$

(100 Ω max bilanciati) nte di eccitazione RTD 0.350 mA CJC ± 0,5°C termica (1)

± 0.01% / °C scala ± 0,01% / °C

max. uscita 20.5 mA circa min. uscita 3.8 mA circa 21,6 mA circa max. fault min. fault 3,5 mA circa nte di tempo Damping


Selezionabile da 0.3 a 30 secondi Valore 0: funzione non attiva.

(1) riferiti allo Span di ingresso (differenza tra Val. max. e Val. min.)

Tempo di risposta (10÷ 90%) 400 ms circa Alimentazione

Tensione di alimentazione 10 32 Vcc Protezione invers. Polarità 60 Vcc max

Caratteristica di carico - Rload (carico in serie al loop di ingresso in funzione della tensione di alimentazione del loop stesso)

Temperatura e Umidità -40°C .. +85°C Temperatura operativa -40°C .. +85°C Temp. di immagazzinaggio Umidità (senza condensa) 0..90% Contenitore Materiale PC + ABS V0 Montaggio In testa DIN B o maggiore Peso 50 g. circa $\emptyset = 43 \text{ mm}$; H = 24 mm Dimensioni

EMC (per ambienti industriali) EN 61000-6-2 Immunità **Emissione** EN 61000-6-4

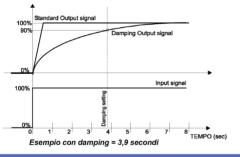
(*) Per i sensori di temperatura è possibile impostare la scala di misura anche in °F; per eseguire la conversione utilizzare la seguente formula: °F = (°C*9/5)+32)

ACCESSORI

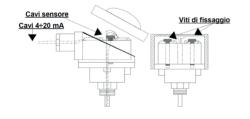
CONVERTITORI/TRASMETTITORI DI TEMPERATURA

CONFIGURAZIONE E CALIBRAZIONE DAT 1015

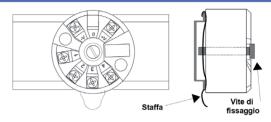
Attenzione, prima di eseguire questa operazione, verificare che i driver del cavo CVPROG in uso siano stati precedentemente installati sul Personal Computer.

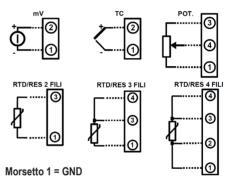

- CONFIGURAZIONE CON APPOSITO CAVO USB CVPROG

- 1) Rimuovere il coperchio plastico di protezione sul DAT 1015.
- 2) Collegare II cavo CVPROG (Lato USB) al Personal Computer ed al dispositivo mediante connettore micro USB
- 3) Aprire il programma di configurazione PROSOFT. Impostare la porta COM assegnata dal sistema operativo al cavo CVPROG.
- 4) Impostare i dati di programmazione
- 5) Inviare i dati di programmazione al dispositivo.

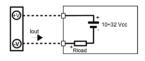

PROGRAMMAZIONE DAT1015 CON CAVO CVPROG

FUNZIONE DAMPING


MONTAGGIO IN TESTA PER SONDA DIN B


ISTRUZIONI PER L'INSTALLAZIONE

Il dispositivo DAT1015 è adatto al montaggio diretto nella testa della sonda DIN B, al cui interno deve essere fissato tramite le viti in dotazione. Tramite apposita staffa, fornita su richiesta, è inoltre possibile montare il dispositivo su binario DIN 50022. Occorre installare il dispositivo in un luogo non sottoposto a vibrazioni evitando di far passare il cablaggio in prossimità di cavi per segnali di potenza.


MONTAGGIO SU BINARIO DIN (OPZIONE DIN RAIL)


COLLEGAMENTI DAT1015 COLLEGAMENTI LATO INGRESSO

COLLEGAMENTI LATO USCITA/ALIMENTAZIONE

DIMENSIONI MECCANICHE (mm)

COME ORDINARE

Il DAT1015 viene fornito nella configurazione richiesta dal cliente in fase di ordine. Nel caso in cui la configurazione del dispositivo non sia specificata, i parametri di funzionamento saranno da impostare a cura dell' utilizzatore. Fare riferimento alla sezione "Specifiche Tecniche" per i campi scala di ingresso ed uscita. Il kit di montaggio per binario DIN viene fornito solo su richiesta con codice DIN RAIL.

ESEMPIO DI CODICE D' ORDINE:

Datexel s.r.l. si riserva il diritto di modificare in tutto o in parte le caratteristiche dei propri prodotti senza alcun preavviso ed in ogni momento

CARATTERISTICHE

- Ingresso configurabile per RTD, TC, mV, Resistenza e Potenziometro
- Isolamento galvanico a 1500 Vca
- Funzione di damping su uscita
- Uscita configurabile in Corrente da 4 a 20 mA
- Configurabile da Personal Computer mediante apposito cavo CVPROG.
- Elevata precisione
- Riconfigurabile in campo
- EMC conforme Marchio CE
- Adatto al montaggio in testa DIN B
- Opzione per montaggio su binario DIN 50022 (Opzione DIN RAIL)

DAT 1066

Trasmettitore universale galvanicamente isolato configurabile da P.C.

DESCRIZIONE GENERALE

Il trasmettitore isolato DAT 1066 è in grado di svolgere svariate funzioni quali: misura e linearizzazione della caratteristica di temperatura con sonde a RTD, conversione di una variazione lineare di resistenza, conversione di un segnale di tensione, anche proveniente da un potenziometro connesso al suo ingresso; il DAT 1066 è inoltre in grado di misurare e linearizzare le termocoppie standard effettuando al proprio interno la compensazione del giunto freddo. I valori misurati vengono trasmessi sul loop di corrente 4÷20 mA. Il dispositivo garantisce una elevata precisione ed una misura molto stabile sia nel tempo che in temperatura. La programmazione avviene tramite Personal Computer attraverso il programma di configurazione PROSOFT, sviluppato da DATEXEL ed operante su sistema operativo "WindowsTM "; è possibile configurare il trasmettitore in modo da poterlo interfacciare con i sensori più usati. Nel caso in cui si presenti la necessità di utilizzare un sensore con una caratteristica di uscita non standard è possibile eseguire, via software, una linearizzazione "Custom" (per punti) in modo da ottenere in uscita un segnale linearizzato. Per le sonde RTD e Resistenza è possibile effettuare la compensazione del cavo con connessione a tre o quattro fili, mentre per le sonde a Termocoppia si ha la possibilità di impostare la compensazione del giunto freddo (CJC) come interna od esterna. E' possibile impostare i valori di inizio e fondo scala delle misure di ingresso ed uscita in qualsiasi punto della scala. E' inoltre disponibile l' opzione di allarme sensore interrotto con impostazione del valore di uscita come fuori scala alto o fuori scala basso. Sul dispositivo è prevista la funzione di damping, ovvero la possibilità di inserire un filtro programmabile fino a 30 secondi per ridurre le eventuali repentine variazioni del segnale di ingresso. La procedura di programmazione può essere eseguita interfacciando il trasmettitore al Personal Computer, mediante l'apposito cavo CVPROG fornito da DATEXEL, senza che esso debba essere collegato ad un alimentatore esterno L' isolamento a 1500 Vca tra ingresso ed uscita/alimentazione elimina tutti qli effetti dovuti ai loops di massa eventualmente presenti, consentendo l'uso del trasmettitore anche nelle più gravose condizioni ambientali. Esso è alloggiato in un contenitore in materiale plastico auto-estinguente adatto al montaggio diretto nella testa della sonda. E' inoltre possibile (tramite apposito kit di montaggio) montare il dispositivo su binario DIN

ISTRUZIONI DI IMPIEGO

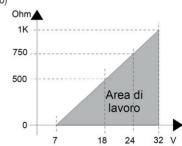
Il trasmettitore DAT1066 deve essere alimentato con una tensione continua compresa tra i valori di 7 e 32 V che deve essere applicata tra i terminali +V e -V. Il segnale di uscita 4÷20 mA è misurabile in serie al loop di alimentazione come illustrato nella sezione "Collegamenti lato uscita/alimentazione"; il carico Rload rappresenta la strumentazione posta in serie al loop di corrente; per una corretta misura si raccomanda che il massimo valore di Rload sia calcolato in funzione del valore della tensione applicata (vedasi sezione "Specifiche Tecniche - Caratteristica di carico"). Le connessioni di ingresso devono essere effettuate in base a quanto indicato nella sezione "Collegamenti lato ingresso". Per la fase di configurazione, calibrazione e le modalità di installazione del trasmettitore fare riferimento alle sezioni "Configurazione e calibrazione DAT1066 " e "Istruzioni per l' installazione".

SPECIFICHE TECNICHE (Tipiche a 25 °C e nelle condizioni nominali)

Tipo di ingressi TC(*) CJC int./est.	Min	Max	Span min	Calibrazione ingressi (1) RTD > di ±0.1% f.s. e ±0.2°
K S R B E T	-200°C -200°C -50°C -50°C 400°C -200°C -200°C	1200°C 1370°C 1760°C 1760°C 1820°C 1000°C 400°C 1300°C	100 °C 100 °C 400 °C 400 °C 400 °C 100 °C 100 °C 100 °C	Res. Basso > di ±0.1% f.s. e ±0.15 Res. Alto > di ±0.2% f.s. e ±1 Ω mV,TC > di ±0.1% f.s. e ±18 u Calibrazione usicta Corrente ± 7 uA Impendenza di ingresso mV >= 10 MΩ Linearità (1) TC ± 0.2 % f.s.
RTD(*) 2,3,4 fili Pt100 Pt1000 Ni100 Ni1000	-200°C -200°C -60°C -60°C	850°C 200°C 180°C 150°C	50°C 50°C 50°C 50°C	$\begin{array}{lll} \text{RTD} & \pm 0.1 \% \text{ f.s.} \\ & \text{Influenza della R di linea (1)} \\ \text{mV} & <= 0.8 \text{uV/Ohm} \\ \text{RTD 3 fili} & 0.05\%/\Omega \\ & (50 \Omega \text{ max bilanciati}) \\ \text{RTD 4 fili} & 0.005\%/\Omega \\ & (100 \Omega \text{ max bilanciati}) \end{array}$
Tensione mV	-100mV	+700mv	2mV	Corrente di eccitazione RTD Tipico 0.350 mA
Potenziometro (Valore nominale)	0Ω 200Ω 0.5 KΩ	200Ω 500Ω 50KΩ	10% 10% 10%	Comp. CJC ± 0,5°C Deriva termica (1) Fondo scala ± 0.01% / °C CJC ± 0,01% / °C
RES. 2,3,4 fili Basso Alto	0Ω 0Ω	300Ω 2000Ω	10Ω 200Ω	Valori di fuori scala Valore max. uscita 20,5 mA circa Valore min. uscita 3,8 mA circa
Tipo di usicta Corrente diretta Reverse current	Min 4mA 20mA	Max 20mA 4mA		Valore max. fault 21,6 mA circa Valore min. fault 3,5 mA circa Costante di tempo Damping Selezionabile da 0,3 a 30 secondi.

Tempo di risposta (10÷ 90%) 400 ms circa Alimentazione

Tensione di alimentazione 7 .. 32 Vcc


Protezione invers. Polarità 60 Vcc max Caratteristica di carico - Rload (carico in serie al loop di ingresso in funzione della tensione di alimentazione del loop

stesso)

e ±0.2°C

e ±18 uV

e ±0.15 Ω

Temperatura e Umidità Temperatura operativa

-40°C .. +85°C Temp. di immagazzinaggio Umidità (senza condensa) 0 .. 90 % Contenitore PC + ABS V0 Materiale Montaggio In testa DIN B o maggiore Peso 50 g. circa Dimensioni $\emptyset = 43 \text{ mm} ; H = 24 \text{ mm}$

-40°C .. +85°C

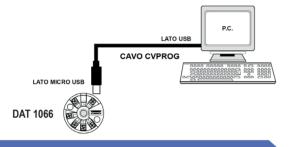
EMC (per ambienti industriali)

EN 61000-6-2 Emissione EN 61000-6-4

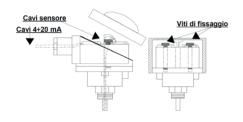
Valore 0: funzione non attiva.

ACCESSORI

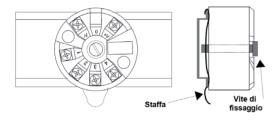
CONVERTITORI/TRASMETTITORI DI TEMPERATURA


CONFIGURAZIONE E CALIBRAZIONE DAT 1066

Attenzione, prima di eseguire questa operazione, verificare che i driver del cavo CVPROG in uso siano stati precedentemente installati sul Personal Computer.


- CONFIGURAZIONE CON APPOSITO CAVO USB CVPROG

- 1) Rimuovere il coperchio plastico di protezione sul DAT 1066.
- 2) Collegare II cavo CVPROG (Lato USB) al Personal Computer ed al dispositivo mediante connettore micro USB
- 3) Aprire il programma di configurazione PROSOFT. Impostare la porta COM assegnata dal sistema operativo al cavo CVPROG.
- 4) Impostare i dati di programmazione
- 5) Inviare i dati di programmazione al dispositivo.

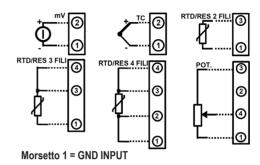

PROGRAMMAZIONE DAT1066 CON CAVO CVPROG

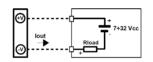
MONTAGGIO IN TESTA PER SONDA DIN B

MONTAGGIO SU BINARIO DIN (OPZIONE DIN RAIL)

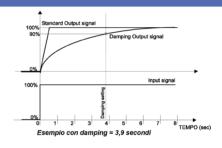
COME ORDINARE

Il DAT1066 viene fornito nella configurazione richiesta dal cliente in fase di ordine. Nel caso in cui la configurazione del dispositivo non sia specificata, i parametri di funzionamento saranno da impostare a cura dell'utilizzatore. Fare riferimento alla sezione "Specifiche Tecniche" per i campi scala di ingresso ed uscita. Il kit di montaggio per binario DIN viene fornito solo su richiesta con codice DIN RAIL.


ESEMPIO DI CODICE D' ORDINE:


ISTRUZIONI PER L'INSTALLAZIONE

Il dispositivo DAT1066 è adatto al montaggio diretto nella testa della sonda DIN B, al cui interno deve essere fissato tramite il kit in dotazione. Tramite apposita staffa, fornita su richiesta, è inoltre possibile montare il dispositivo su binario DIN 50022. Occorre installare il dispositivo in un luogo non sottoposto a vibrazioni evitando di far passare il cablaggio in prossimità di cavi per segnali di potenza.


COLLEGAMENTI DAT1066 COLLEGAMENTI LATO INGRESSO

COLLEGAMENTI LATO USCITA/ALIMENTAZIONE

FUNZIONE DAMPING

STRUTTURA ISOLAMENTI

DIMENSIONI MECCANICHE (mm)

Datexel s.r.l. si riserva il diritto di modificare in tutto o in parte le caratteristiche dei propri prodotti senza alcun preavviso ed in ogni momento

ACCESSORI

CONVERTITORI/TRASMETTITORI DI TEMPERATURA

CARATTERISTICHE

- Ingresso configurabile per RTD, TC, mV, Resistenza e Potenziometro
- Isolamento galvanico a 1500 Vca
- Uscita configurabile in Tensione da 0 a 10 V
- Configurabile da Personal Computer mediante apposito cavo CVPROG
- Elevata precisione
- Riconfigurabile in campo
- EMC conforme Marchio CE
- Adatto al montaggio in testa DIN B
- Opzione per montaggio su binario DIN 50022 (Opzione DIN RAIL)

DAT 1135

Convertitore isolato con uscita 0÷10 V configurabile da P.C.

DESCRIZIONE GENERALE

Il convertitore isolato DAT 1135 è in grado di svolgere svariate funzioni quali: misura e linearizzazione della caratteristica di temperatura con sonde RTD, conversione di una variazione lineare di resistenza, conversione di un segnale di tensione, anche proveniente da un potenziometro connesso al suo ingresso; il DAT 1135 è inoltre in grado di misurare e linearizzare le termocoppie standard effettuando al proprio interno la compensazione del giunto freddo. I valori misurati vengono convertiti in un segnale 0÷10 V. Il dispositivo garantisce una elevata precisione ed una misura molto stabile sia nel tempo che in temperatura. Per le sonde RTD e Resistenza è possibile effettuare la compensazione del cavo con connessione a tre o quattro fili, mentre per le sonde a Termocoppia si ha la possibilità di impostare la compensazione del giunto freddo (CJC) come interna od esterna. E' possibile impostare i valori di inizio e fondo scala delle misure di ingresso ed uscita in qualsiasi punto della scala. E' inoltre disponibile l' opzione di allarme sensore interrotto con impostazione del valore di uscita come fuori scala alto o fuori scala basso. Sul dispositivo è prevista la possibilità di inserire un filtro programmabile fino a 30 secondi per ridurre le eventuali repentine variazioni del segnale di ingresso. L' isolamento a 1500 Vca tra ingresso ed uscita/alimentazione elimina tutti gli effetti dovuti ai loops di massa eventualmente presenti, consentendo l' uso del convertitore anche nelle più gravose condizioni ambientali. Esso è alloggiato in un contenitore in materiale plastico auto-estinguente adatto al montaggio diretto nella testa della sonda. E' inoltre possibile (tramite apposito kit di montaggio) montare il dispositivo su binario DIN.

PROGRAMMAZIONE

La programmazione avviene tramite Personal Computer attraverso il programma di configurazione DATESOFT, sviluppato da DATEXEL ed operante su sistema operativo "WindowsTM" con il quale è possibile configurare il trasmettitore per poterlo interfacciare con i sensori più usati. La procedura di programmazione può essere eseguita interfacciando il trasmettitore al Personal Computer, mediante l'apposito cavo CVPROG fornito da DATEXEL, senza che esso debba essere collegato ad un alimentatore esterno.

ISTRUZIONI DI IMPIEGO

Il trasmettitore DAT1135 deve essere alimentato con una tensione continua compresa tra i valori di 18 e 30 V che deve essere applicata tra i terminali +V e -V. Il segnale di uscita 0÷10 V è misurabile tra i terminali O (OUT) e -V. Le connessioni di ingresso devono essere effettuate in base a quanto indicato nella sezione "Collegamenti lato ingresso". Per la fase di configurazione, calibrazione e le modalità di installazione del convertitore fare riferimento alle sezioni "Configurazione e calibrazione DAT1135 " e "Istruzioni per l' installazione".

SPECIFICHE TECNICHE (Tipiche a 25 °C e nelle condizioni nominali)

Tipo di ingressi	Min	Max	Span min	Calibrazione ingre	essi (1)
TC(*) CJC int./est.				RTD	> di ±0.1% f.s. e ±0.2°C
J	-200°C	1200°C	100 °C	Res. Basso	$>$ di $\pm 0.1\%$ f.s. e $\pm 0.15~\Omega$
K	-200°C	1300°C	100 °C	Res. Alto	$>$ di $\pm 0.2\%$ f.s. e $\pm 1~\Omega$
S	0°C	1750°C	400 °C	mV,TC	> di ±0.1% f.s. e ±10 uV
R	0°C	1750°C	400 °C	Calibrazione usic	***
В	0°C	1800°C	400 °C	Tensione	± 5 mV
E	-200°C	1000°C	100 °C	Impendenza di in	
T	-200°C	400°C	100 °C	TC, mV	>= 10 MΩ
N	-200°C	1300°C	100 °C	Linearità (1)	
DTD(*) 0.0.4 CU				TC	± 0.2 % f.s.
RTD(*) 2,3,4 fili	-200°C	850°C	50°C	RTD	± 0.1 % f.s.
Pt100	-200°C	185°C	30°C	Influenza della R	di linea (1)
Pt1000	-60°C	180°C	50°C	TC, mV	<=0.8 uV/Ohm
Ni100	-60°C	150°C	30°C	RTD 3 fili	$0.05\%/\Omega$
Ni1000		.00			(50 Ω max bilanciati)
Tensione				RTD 4 fili	$0.005\%/\Omega$
mV	-100mV	+90mv	5mV		(100 Ω max bilanciati)
mV		+200mV	10mV	Corrente di eccita	zione RTD
mV	-100mV	+800mV	20mV	Tipico	0.350 mA
Potenziometro (R nom. $< 50 \text{ K}\Omega$)	0%	100%	50%	Comp. CJC	± 0,5°C
'	0 70	10070	30 /0	Deriva termica (1)	
RES. 2,3,4 fili	0Ω	500Ω	50Ω	Fondo scala	± 0.01% / °C
	0Ω	2000Ω	500Ω	CJC	± 0.01% / °C
		200012		Valori di fuori sca	la
Tipo di usicta	Min	Max	Span min	Valore max. fault	11.1 V circa
Corrente diretta	0 V	10 V	1 V	Valore min. fault	-0.65 V circa
Reverse current	10 V	0 V	1 V	- 55.0 mm radit	-,
				(1) riferiti allo Span di ingres	sso (differenza tra Val. max. e Val. min.)

Resistenza di carico su uscita	a - Rload
Uscita in tensione	>/= 5 KΩ
Corrente di corto-circuito	26 mA max
Tempo di risposta (10÷ 90%)	200 ms circa

Costante di filtro uscita

Programmabile da 0,2 a 30 secondi Alimentazione

Tensione di alimentazione
Consumo di corrente
Protezione invers. Polarità
18 .. 30 Vcc
10 mA max.
60 Vcc max

Tensione di isolamento

Ingresso - Uscita/Alim. 1500 Vca, 50 Hz,1 min.

Temperatura e Umidità

Temperatura operativa -40°C .. +85°C
Temp. di immagazzinaggio -40°C .. +85°C
Umidità (senza condensa) 0 .. 90 %

Contenitore Materiale

Montaggio In testa DIN B o maggiore

PC + ABS V0

Peso 50 g. circa

Dimensioni $\emptyset = 43 \text{ mm}$; H = 24 mm

EMC (per ambienti industriali)

Immunità EN 61000-6-2 Emissione EN 61000-6-4

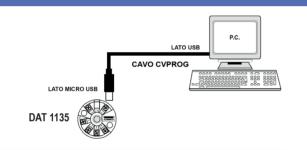
ACCESSOR

CONVERTITORI/TRASMETTITORI DI TEMPERATURA

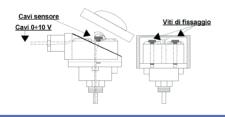
CONFIGURAZIONE E CALIBRAZIONE DAT 1135

Attenzione, prima di eseguire questa operazione, verificare che i driver del cavo CVPROG in uso siano stati precedentemente installati sul Personal Computer.

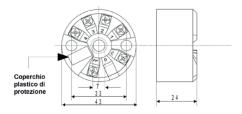
- CONFIGURAZIONE CON APPOSITO CAVO USB CVPROG

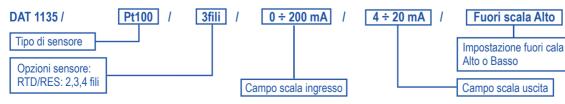

- 1) Rimuovere il coperchio plastico di protezione sul DAT1135.
- 2)Collegare II cavo CVPROG (Lato USB) al Personal Computer ed al dispositivo mediante connettore micro USB
- 3) Aprire il programma di configurazione DATESOFT. Impostare la porta COM assegnata dal sistema operativo al cavo CVPROG.
- 4) Impostare i dati di programmazione.
- 5) Inviare i dati di programmazione al dispositivo.

- CONTROLLO DELLA CALIBRAZIONE

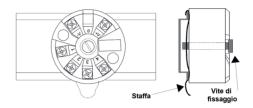

Con programma DATESOFT in esecuzione e dispositivo alimentato:

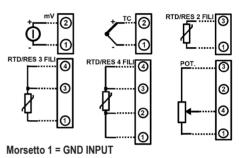
- 1) Collegare in ingresso un simulatore impostato con i valori di inizio e fondo scala relativi alla grandezza elettrica oppure al sensore di temperatura da misurare.
- 2) Portare il simulatore al valore di inizio scala.
- 3) Verificare che il dispositivo fornisca il valore minimo di uscita impostato.
- 4) Portare il simulatore al valore di fondo scala.
- 5) Verificare che il dispositivo fornisca il valore massimo di uscita impostato.


PROGRAMMAZIONE DAT1135 CON CAVO CVPROG

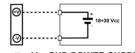

MONTAGGIO IN TESTA PER SONDA DIN B

DIMENSIONI MECCANICHE (mm)


ESEMPIO DI CODICE D' ORDINE:


Il dispositivo DAT1135 è adatto al montaggio diretto nella testa della sonda DIN B, al cui interno deve essere fissato tramite il kit in dotazione. Tramite apposita staffa, fornita su richiesta, è inoltre possibile montare il dispositivo su binario DIN 50022. Occorre installare il dispositivo in un luogo non sottoposto a vibrazioni evitando di far passare il cablaggio in prossimità di cavi per segnali di potenza.

ISTRUZIONI PER L'INSTALLAZIONE


MONTAGGIO SU BINARIO DIN (OPZIONE DIN RAIL)

COLLEGAMENTI DAT1135 COLLEGAMENTI LATO INGRESSO

COLLEGAMENTI LATO ALIMENTAZIONE

Morsetto -V = GND POWER SUPPLY

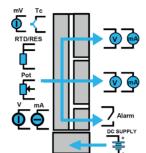
COLLEGAMENTI LATO USCITA

Morsetto -V = GND OUTPUT

STRUTTURA ISOLAMENTI

COME ORDINARE

Il DAT1135 viene fornito nella configurazione richiesta dal cliente in fase di ordine. Nel caso in cui la configurazione del dispositivo non sia specificata, i parametri di funzionamento saranno da impostare a cura dell'utilizzatore. Fare riferimento alla sezione "Specifiche Tecniche" per i campi scala di ingresso ed uscita. Il kit di montaggio per binario DIN viene fornito solo su richiesta con codice DIN RAIL.


ED.01.14 REV.02

Datexel s.r.l. si riserva il diritto di modificare in tutto o in parte le caratteristiche dei propri prodotti senza alcun preavviso ed in ogni momento

CARATTERISTICHE

- Ingresso Universale configurabile per: mV. Tc. RTD, Res, Potenziometro, V, mA

- Doppia uscita configurabile in corrente o tensione
- Soglia di allarme
- Configurabile tramite Dip-switch o PC
- Possibilità, tramite PC, di impostare la programmazione indipendente delle uscite
- Elevata precisione
- Riconfigurabile in campo
- Isolamento galvanico su tutte le vie
- EMC conforme Marchio CE
- Adatto al montaggio su binario DIN conforme a EN-50022 ed EN-50035

Convertitore Universale isolato configurabile da Dip-Switch o PC Doppia uscita e Soglia di allarme

DAT 4530

DESCRIZIONE GENERALE

Il convertitore universale isolato DAT 4530 è in grado di misurare e linearizzare segnali in tensione, corrente e resistenza oltre ai potenziometri e ai sensori a termocoppia e termoresistenza standard, effettuando al proprio interno, se necessario, la compensazione del giunto freddo o dell'impedenza dei fili. Per ingressi mV, V e mA è possibile impostare un tempo di campionamento veloce (opzione HS) oppure eseguire l'estrazione di radice quadrata del segnale misurato (opzione SQRT). I valori misurati vengono convertiti sulle due uscite in funzione della programmazione, in segnali normalizzati in corrente o tensione. E' disponibile inoltre un contatto programmabile come soglia di allarme. Il dispositivo garantisce una elevata precisione ed una misura molto stabile sia nel tempo che in temperatura. La programmazione avviene tramite Dip-Switch accessibili tramite lo sportello posto sul fianco del contenitore. Tramite i dip-switch è possibile selezionare il tipo di ingresso, il relativo campo scala, ed il tipo di uscita, senza la necessità di dover ricalibrare il dispositivo. Inoltre, tramite PC, l'utente può impostare tutti i parametri di configurazione del dispositivo, secondo le proprie necessità; la programmazione tramite PC consente di impostare le due uscite con due programmazioni indipendenti ed i parametri dell'allarme di soglia. L' isolamento galvanico su tutte le vie (ingresso, uscite e alimentazione) elimina tutti gli effetti dovuti ai loops di massa eventualmente presenti, consentendo l' uso del dispositivo anche nelle più gravose condizioni ambientali. Il DAT 4530 è conforme alla direttiva 2004/108/CE sulla compatibilità elettromagnetica. Esso è alloggiato in un contenitore plastico di 12,5 mm di spessore adatto al montaggio su binario DIN conforme agli standard EN-50022 ed EN-50035 .

ISTRUZIONI DI IMPIEGO

Il convertitore deve essere alimentato con una tensione continua applicata tra i morsetti U e V. Il canale analogico acquisisce il valore dal sensore collegato ai morsetti C-D-E-F-G-H-I-L e trasferisce la misura in uscita sui morsetti M-N-O-P (OUT A) e Q-R-S-T (OUT B). E' disponibile un contatto per l'allarme di soglia tra i morsetti A-B. Le connessioni di ingresso e uscita devono essere effettuate in base a quanto indicato nella sezione "Collegamenti". El possibile riconfigurare il convertitore in campo attraverso i dip-switch oppure via software come illustrato nella sezione "Programmazione "; la programmazione tramite dip-switch può avvenire anche a modulo alimentato

± 0.1 % f.s.

± 0.05 % f.s.

SPECIFICHE TECNICHE (Tipiche a 25 °C e nelle condizioni nominali)

Impendenza di ingresso

Tipo ingresso TC CJC int./est.	Min	Max	Span min	Linearità(1)
J K	-200°C -200°C	1200°C 1300°C	100°C 100°C	mV, V, mA Impendenza
S R	0°C	1750°C 1750°C	400°C 400°C	TC, mV mA
В	0°C	1850°C	400°C	Corrente di
E	-200°C	1000°C	100°C	RTD, Res
Ţ	-200°C	400°C	100°C	Tensione Aux
N RTD 2,3,4 fili	-200°C	1300°C	100°C	Influenza de TC, mV
Pt100 Pt1000	-200°C -85°C	850°C 185°C	50°C 30°C	RTD 3 fili
Ni100 Ni100	-60°C	180°C 150°C	50°C 30°C	RTD 4 fili
Tensione				Deriva termi
mV	-100mV	+90mV	5mV	Fondo Scala
mV mV	-100mV -100mV	+200mV +800mV	10mV 20mV	CJC Comp.CJC
Pot. (R nom. < 50 KΩ)	0%	100%	10%	
RES. 2,3,4 fili	0 70	10070	10 /0	USCITA (2 ca
NEO. 2,0,4 IIII	0 Ω 0 Ω	500 Ω 2000 Ω	50 Ω 500 Ω	Tipo di usict Corrente Tensione
Tensione	-10 V	10 v	1 V	Calibrazione
Corrente	0 Ma	20 mA	1 mA	Corrente Tensione
Calibrazione (1) mV, TC RTD			% e ±12 uV % e ±0.2°C	Tensione Au Valori fuori s Valore max. u
Res. Potenziometro	il magg	iore di ±0.´ ±	1% e ±0.15 0.05 % f.s.	Valore min. u Resistenza o
Volt mA			% e ± 2 mV % e ± 6 uA	Uscita in corr Uscita in tens
mV, V, mA	ii iiiaggic		s (opz. HS)	Corrente di c

TC, mV	>= 10 N	/Ω				
mA	~22 Ω					
Corrente di ec	citazione	sensore				
RTD, Res						
Tensione Aux.						
Influenza della						
TC, mV						
RTD 3 fili	0.05%/0	_				
		ax bilancia	ati)			
RTD 4 fili	0.005%	Ω				
	$(100\Omega$	max bilan	ciati)			
Deriva termica						
Fondo Scala						
CJC	± 0.01%					
Comp.CJC	± 0.5°C					
USCITA (2 can	ali)					
Tipo di usicta	Min	Max	Span Min			
Corrente	0 mA	20 mA	4mA			
Tensione		10 V	1 V			
Calibrazione u	scita	_				
Corrente		_	7 uA			
Tensione		_	5 mV			
Tensione Aux.		>1	2V @ 20mA			
Valori fuori sc		00				
10.0.0.0	Valore max. usicta 22 mA or 11 V					
Valore min. uscita 0 mA or -0.6 V Resistenza di carico su uscita - Rload						
Uscita in correr			500 Ω			
Uscita in tensio			10 KΩ			
Corrente di cor			mA max.			
Tempo di rispo						
Tampe an Hope						
)5ta (10 ·		0 ms (opz.HS)		

SOG	1 1 1	DI	ΛII	$I \land D$	ME
\mathbf{v}	LIA	וט	AL	LAR	IVI

Contatti	SPST
Carico resistivo Tensione Corrente ALIMENTAZIONE	48 V (ca/cc) 0.4 A
Tensione di alimentazione Protezione invers. Polarità	20 30 Vcc 60 Vcc max
Consumo di corrente Uscita di corrente Uscita di tensione	90 mA max. 30 mA max
ISOLAMENTO Su tutte le vie	1500 Vca, 50 Hz, 1 min
TEMPERATURA E UMIDITA' Temperatura operativa Temp.di immagazzinaggio Umidità (senza condensa)	-20°C +60°C -40°C +85°C 0 90 %
CONTENITORE	

ерет

Materiale	Plastica auto-estinguente
Montaggio	su binario DIN conforme
	a EN-50022 e EN-50035
Peso	90 g. circa
EMC (per gli ambienti indust	riali)
Immunità	EN 61000-6-2
Emissione	EN 61000-6-4

(1) riferiti allo Span di ingresso (differenza tra Val. max. e Val. min.)

ACCESSOR

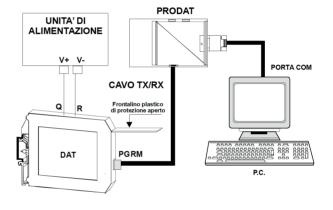
CONVERTITORI/TRASMETTITORI DI TEMPERATURA

CRITERIO DI FUNZIONAMENTO DELLE SOGLIE

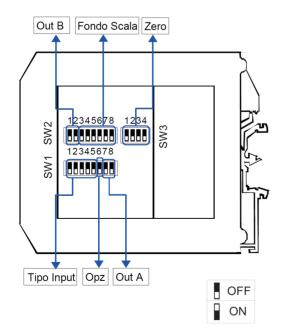
La soglia di massima attiva il relay quando il segnale di ingresso supera la soglia impostata. Il relay viene disattivato solo quando il segnale di ingresso scende sotto il valore della soglia meno il valore dell'isteresi, oppure quando raggiunge il valore minimo della scala di ingresso.

La soglia di minima attiva il relay quando il segnale di ingresso scende sotto la soglia impostata. Il relay viene disattivato solo quando il segnale di ingresso sale sopra il valore della soglia più il valore dell'isteresi oppure uando raggiunge il valore massimo della scala di ingresso.

PROGRAMMAZIONE

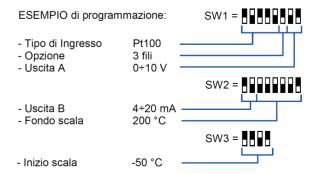

CONFIGURAZIONE TRAMITE PC

Tramite il software di configurazione DATESOFT è possibile:


- Impostare le programmazioni di default del modulo
- Impostare le opzioni non disponibili tramite i dip-switch (livello break, compensazione, riduzione tempo di campionamento, ecc...)
- Leggere in tempo reale la misura di ingresso e uscita
- Seguire la procedura guidata di configurazione dei dip-switch

Per configurare il dispositivo seguire la seguente procedura:

- 1) Alimentare il dispositivo.
- 2) Aprire il frontalino plastico di protezione sul fronte del dispositivo.
- 3) Collegare l'interfaccia PRODAT al Personal Computer ed al dispositivo (connettore PGRM).
- 4) Aprire il programma di configurazione.
- 5) Selezionare la porta COM alla quale è collegato il dispositivo.
- 6) Premere il pulsante "Apri COM".
- 7) Selezionare la finestra "Programma"
- 8) Impostare i dati di programmazione.
- 9) Premere il pulsante "Scrivi" per inviare i dati di programmazione.



Attenzione: durante tutta la procedura il dispositivo deve essere sempre alimentato ed il cavo di collegamento non deve essere scollegato. Per informazioni dettagliate sul funzionamento del programma di configurazione, fare riferimento al relativo manuale operativo.

CONFIGURAZIONE TRAMITE DIP-SWITCH

- 1) Aprire lo sportello sul lato del dispositivo.
- 2) Impostare il tipo di ingresso sui dip-switch SW1 [1..5] (vedi TAB.1)
- 3) Impostare il tipo di uscita sui dip-switch SW1 [7..8] e SW2 [1..2] (vedi TAB.2)
- 4) Impostare, se previsto, le opzioni sul dip-switch SW1 [6] (vedi TAB.3)
- 5) Impostare il valore di Inizio scala di ingresso sui dip-switch SW3 [1..4] (vedi TAB.4)*
- 6) Impostare il valore di Fondo scala di ingresso sui dip-switch SW2 [3..8] (vedi TAB.4)*

NOTA:

- Il software di configurazione dispone di una procedura guidata per l'individuazione della corretta impostazione dei dip-switch (collegare il dispositivo al PC seguendo la procedura descritta nella sezione "Configurazione tramite PC").

Datexel s.r.l. si riserva il diritto di modificare in tutto o in parte le caratteristiche dei propri prodotti senza alcun preavviso ed in ogni momento

TABELLE CONFIGURAZIONE DIP-SWITCH

TAB.1 - Impostazione tipo di ingresso

		1100 011 1119			
SW1 12345		SW1 12345		SW1 1 2 3 4 5	
	EPROM *		Tc J		Res. 2KΩ
	90 mV		Tc K		Res. 500Ω
	200 mV		Tc R		Pt100
	800 mV		Tc S		Ni100
	10 V		Tc T		Pt 1K
	20 mA		Tc B		Ni 1K
			Tc E		Pot. <500Ω
			Tc N		Pot. <2KΩ

TAB.2 Uscita A

sw1 7 8 0-20 mA 4-20 mA 0-10 V 0-5 V Uscita B

SW2
1 2
0-20 mA
4-20 mA
0-10 V
0-5 V

TAB.3

Оргіоні							
SW1	CJC	RTD/RES					
lě	Esterno	3 fili					
	Interno	2/4 fili					

NOTE:

- * Per l'impostazione del campo scala di ingresso, fare riferimento alla sezione della TAB.4 (pagine seguenti) riferita al tipo di ingresso impostato (TAB.1)
- * Se i dip-switch SW1 [1..5] sono tutti impostati alla posizione 0 ("EPROM"), verrà caricata l'intera configurazione impostata tramite PC (tipo di ingresso, campo scala di ingresso, tipo di uscita, campo scala di uscita e opzioni.
- * Se i dip-switch SW2 [3..8] ed SW3 [1..4]sono tutti impostati alla posizione 0 ("Default"), verrà caricato il campo scala di default impostato tramite PC (relativamente al tipo di ingresso impostato su SW1[1..5]).
- * Eventuali configurazioni errate sui dip-switch, verranno segnalate con il lampeggiamento del led PWR.
- * Se il dip-switch SW1 [6] è impostato nella posizione ON e si sta eseguendo una misura per RTD o Resistenza a 2 fili, è necessario cortocircuitare i morsetti I L e G H.

TAB 4a - Impostazione campo scala mV, Tc

	3.4a - Impostazione campo scala mv, 10								
Zero		Fondo 9							
SW3	°C	SW2 345678	°C	SW2	°C	SW2 345678	°C	SW2	°C
1234	Default	345678	Default	345678	75		225	345678	700
	-200		0		80		250		750
	-100		5		85		255		800
	-80		10		90		275		850
	-60		15		95		300		900
	-50		20		100		325		950
	-40		25		110		350		1000
	-30		30		120		375		1100
	-20		35		130		400		1200
	-10		40		140		425		1300
	0		45		150		450		1400
	10		50		160		475		1500
	20		55		170		500		1600
	50		60		180		550		1750
	100		65		190		600		1800
	150		70		200		650		1850

TAB.4b - Impostazione campo scala Pt100, Pt1K, Ni100, Ni1K

	TAB.4b - Impostazione campo scala Ft100, Ft1K, Ni100, N11K								
Zero		Fondo S	cala						
SW3 1 2 3 4	°C	SW2 345678	°C	SW2 3 4 5 6 7 8	°C	SW2 3 4 5 6 7 8	°C	SW2 3 4 5 6 7 8	°C
1234	Default	345678	Default		75		210		370
	-200		0		80		220		380
	-150		5		85		230		390
	-100		10		90		240		400
	-50		15		95		250		425
	-40		20		100		260		450
	-30		25		110		270		475
	-20		30		120		280		500
	-10		35		130		290		525
	0		40		140		300		550
	5		45		150		310		600
	10		50		160		320		650
	20		55		170		330		700
	30		60		180		340		750
	50		65		190		350		800
	100		70		200		360		850

TAB.4c – Impostazione campo scala Resistenza < 2KOhm

Zero		_ Fondo S	Scala						
SW3 1 2 3 4		SW2 3 4 5 6 7 8		SW2 3 4 5 6 7 8		SW2 3 4 5 6 7 8		SW2 3 4 5 6 7 8	
	Ω Default		Ω Default		Ω 800		Ω 1150		Ω 1600
	0		500		820		1175		1650
	150		520		840		1200		1700
	200		540		860		1225		1750
	250		560		880		1250		1800
	300		580		900		1275		1850
	350		600		920		1300		1900
	400		620		940		1325		1950
	450		640		960		1350		2000
	500		660		980		1375		2000
	550		680		1000		1400		2000
	600		700		1025		1425		2000
	650		720		1050		1450		2000
	700		740		1075		1475		2000
	750		760		1100		1500		2000
	800		780		1125		1550		2000

TAB.4d – Impostazione campo scala Resistenza < 500 ohm

Zero		Fondo S							
SW3		SW2		SW2		SW2		SW2	
1234	Ω	345678	Ω	345678	Ω	3 4 5 6 7 8	Ω	3 4 5 6 7 8	Ω
	Default		Default		125		210		370
	0		50		130		220		380
	10		55		135		230		390
	20		60		140		240		400
	30		65		145		250		410
	40		70		150		260		420
	50		75		155		270		430
	75		80		160		280		440
	100		85		165		290		450
	125		90		170		300		460
	150		95		175		310		470
	175		100		180		320		480
	200		105		185		330		490
	225		110		190		340		500
	250		115		195		350		500
	300		120		200		360		500

TAB.4e - Impostazione campo scala Potenziometro

Zero		Fondo Scala						
SW3 1234	%	SW2 345678 %	SW2 3 4 5 6 7 8	%	SW2 3 4 5 6 7 8	%	SW2 3 4 5 6 7 8	%
	Default	Defa		34		36		98
	0	5		36		38		100
	15	6		38		70		100
	20	8		40		72		100
	25	10		42		74		100
	30	12		44		76		100
	35	14		46		78		100
	40	16		48		30		100
	45	18		50		32		100
	50	20		52		34		100
	55	22		54		36		100
	60	24		56		38		100
	65	26		58		90		100
	70	28		60		92		100
	75	30		62		94		100
	80	32		64		96		100

TAB.4f – Impostazione campo scala mA

Zero		Fondo S	Scala						
SW3		SW2	4	SW2		SW2	4	SW2	4
1 2 3 4	^{mA} Default	3 4 5 6 7 8	mA Default	3 4 5 6 7 8	mA 8	3 4 5 6 7 8	mA 11,5	345678	mA 16
					_		,		
	0		5		8,2		11,75		16,5
	1,5		5,2		8,4		12		17
	2		5,4		8,6		12,25		17,5
	2,5		5,6		8,8		12,5		18
	3		5,8		9		12,75		18,5
	3,5		6		9,2		13		19
	4		6,2		9,4		13,25		19,5
	4,5		6,4		9,6		13,5		20
	5		6,6		9,8		13,75		20
	5,5		6,8		10		14		20
	6		7		10,25		14,25		20
	6,5		7,2		10,5		14,5		20
	7		7,4		10,75		14,75		20
	7,5		7,6		11		15		20
	8		7,8		11,25		15,5		20

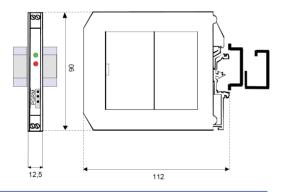
TAB.4g – Impostazione campo scala Volt

17D.4g	- imposta.	zione cam	JU SCAIA	VOIL					
Zero		Fondo S	Scala						
SW3	Volt	SW2	Volt	SW2	Volt	SW2	Volt	SW2	Volt
1 2 3 4		3 4 5 6 7 8		3 4 5 6 7 8		3 4 5 6 7 8		345678	
	Default		Default		3,4		6,6		9,8
	0		0,5		3,6		6,8		10
	1,5		0,6		3,8		7		10
	2		0,8		4		7,2		10
	2,5		1		4,2		7,4		10
	3		1,2		4,4		7,6		10
	3,5		1,4		4,6		7,8		10
	4		1,6		4,8		8		10
	4,5		1,8		5		8,2		10
	5		2		5,2		8,4		10
	5,5		2,2		5,4		8,6		10
	6		2,4		5,6		8,8		10
	6,5		2,6		5,8		9		10
	7		2,8		6		9,2		10
	7,5		3		6,2		9,4		10
	8		3,2		6,4		9,6		10

ISTRUZIONI PER L'INSTALLAZIONE

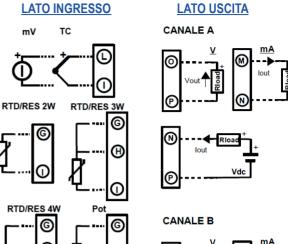
Il dispositivo è adatto al montaggio su binario DIN in posizione verticale. Per un funzionamento affidabile e duraturo del dispositivo seguire le seguenti indicazioni.

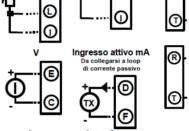
Nel caso in cui i dispositivi vengano montati uno a fianco all'altro distanziarli di almeno 5 mm nei sequenti casi:

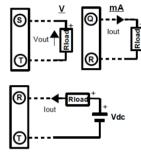

- Temperatura del quadro maggiore di 45 °C e tensione di alimentazione elevata (>27Vcc).
- Utilizzo delle uscite in corrente attive .
- Utilizzo dell'ingresso in corrente attivo.

Evitare che le apposite feritoie di ventilazione siano occluse da canaline o altri oggetti vicino ad esse. Evitare il montaggio dei dispositivi al di sopra di apparecchiature generanti calore; si raccomanda di montare il dispositivo nella parte bassa dell'installazione, quadro o armadio che sia. Installare il dispositivo in un luogo non sottoposto a vibrazioni. Si raccomanda inoltre di non far passare il cablaggio in prossimità di cavi per segnali di potenza e che il collegamento sia effettuato mediante l' impiego di cavi schermati.

COLLEGAMENTI LATO ALIMENTAZIONE


DIMENSIONI MECCANICHE (mm)

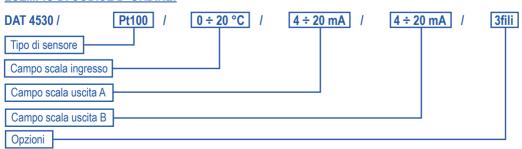



COME ORDINARE

Il dispositivo viene fornito nella configurazione richiesta dal cliente in fase di ordine. Riferirsi alla sezione "Programmazione" per i campi scala di ingresso ed uscita. Nel caso in cui la configurazione del dispositivo non sia specificata, i parametri di funzionamento saranno da impostare a cura dell' utilizzatore.

COLLEGAMENTI

SOGLIA DI ALLARME


ALIMENTAZIONE

SOGLIA DI ALLARME

LED	COLORE	STATO	DESCRIZIONE
PWR	VERDE	ACCESO	Modulo alimentato
		SPENTO	Modulo non alimentato correttamente
		LAMPEGGIO	Configurazione errata
ALARM	ROSSO	ACCESO	Allarme Soglia attivo
		SPENTO	Allarme Soglia non attivo

ESEMPIO DI CODICE D' ORDINE:

ED.05.08-R.09

Datexel s.r.l. si riserva il diritto di modificare in tutto o in parte le caratteristiche dei propri prodotti senza alcun preavviso ed in ogni momento

LT CAL®

Il programma di certificazioni e tarature per:

- Sensori a termocoppia e termotesistenza
- Catane di misura termometrica, sonda più indicatore
- Calibratori di temperatura
- Indicatori
- Impianti, mappature termiche, profili termica

I sistemi di assicurazione qualità in ambito aziendale, sono stati fissati in accordo con le normative ISO 9001, 9002, 9003 a partire dal 1987. Altre normative guida si applicano a specifici settori industriali, per esempio GMP (farmaceutici e tecnologie medicali) o QS9000 (automotive) etc. Comunque qualsiasi azienda, anche impegnata nella fornitura di servizi, (banche, compagnie assicurative, ospedali ...) può applicare il regime di assicurazione qualità delle normative ISO.

L'introduzione e il mantenimento di sistemi di calibrazione o testing nelle aziende, è espressamente richiesto da qualsiasi linea guida e normativa ISO.

I certificati di calibrazione **LT cal**® rispondono completamente alle specifiche fissate dalle normative QS

- ISO 9001
- ISO 10012-1
- GMP
- FDA
- QS 9000

LT cal® è il migliore compromesso tra qualità e costo, che i laboratori di taratura de LA TERMOTECNICA vi possono offrire.

LT cal® sono disponibili in lingua italiana ed in lingua inglese, poichè sono validi e riconosciuti in tutti i paesi dove sono vigenti ed applicate le norme ISO.

LT CAL®

Sono certificati di calibrazione a basso costo, in alternativa ai certificati **ACCREDIA**. Comunque, le procedure di calibrazione applicate sono state realizzate in accordo con le linee quida EAL-R2 (European cooperation for Accreditation of Laboratories) ed alla UNI CEI EN 45000 (general criteria for the operation of testing laboratories).

 Calibrazioni con metodo per confronto con campioni primari nel range di temperatura da -40 a +1064 °C.

Sensori a termocoppia singolo elemento

RANGE	N° PUNTI	TABULAZIONE	CODICE ORDINE
0 1064 °C	5	si	XS TC51SSR
0 600 °C	4	si	XS TC42SSR
0 250 °C	3	si	XS TC33SSR
0 100 °C	3	si	XS TC34SSR
-40 40 °C	3	si	XS TC35SSR
Punti aggiuntivi	a richiesta.		

I punti di temperatura devono essere indicati al momento dell'ordine.

Sensori a termoresistenza singolo elemento

RANGE	N° PUNTI	TABULAZIONE	CODICE ORDINE				
0 400°C	4	si	XS P46SSR				
0 250 °C	3	si	XS P43SSR				
0 100 °C	3	si	XS P34SSR				
-40 40 °C	3	si	XS P35SSR				
00	unti aggiuntivi a richiesta. uunti di temperatura devono essere indicati al momento dell'ordine.						

Le tarature sono eseguite da personale specializzato, all'interno del ns. laboratorio termometrico secondo i seguenti procedimenti

- -40 .. +40 °C In termostato a liquido per confronto con termometro campione a resistenza di platino
- +40 .. +250 °C In termostato a fluido siliconico per confronto con termometro campione a resistenza di platino
- +250 .. +600 °C In termostato a sali fusi per confronto con termometro campione a resistenza di platino
- +600 .. +1064 °C In forno a blocco comparatore per confronto con termocoppia campione al platino

LT CAL®

Sono certificati di calibrazione a basso costo, in alternativa ai certificati **ACCREDIA**. Comunque, le procedure di calibrazione applicate sono state realizzate in accordo con le linee quida EAL-R2 (European cooperation for Accreditation of Laboratories) ed alla UNI CEI EN 45000 (general criteria for the operation of testing laboratories).

 Calibrazioni con metodo per confronto con campioni primari nel range di temperatura da -40 a +1064 °C.

Con catena di misura, si intende il sistema termometrico costituito da un sistema termometro più sensore (termometro registratore indicatore etc..). E' possibile certificare termometri e sensori di qualsiasi marca o modello, purché questi siano inviati ai ns. laboratori corredati di eventuali manuali di utilizzo. Il certificato, riporta in una tabella i valori misurati, quelli veri e lo scostamento in °C rilevato ad ogni punto di misura.

RANGE	N° PUNTI	TABULAZIONE	CODICE ORDINE
0 1064 °C	5	non. disp	XC 5TCRS
0 600 °C	4	non. disp	XC 4TCRS
0 250 °C	3	non. disp	XC 3TCRS
0 100 °C	3	non. disp	XC 3TCRS
-40 40 °C	3	non. disp	XC 3TCRS
Done Construction			

Le tarature sono eseguite da personale specializzato, all'interno del ns. laboratorio termometrico secondo i seguenti procedimenti

I punti di temperatura devono essere indicati al momento dell'ordine.

- -40 .. +40 °C In termostato a liquido per confronto con termometro campione a resistenza di platino
- +40 .. +250 °C In termostato a fluido siliconico per confronto con termometro campione a resistenza di platino
- +250 .. +600 °C In termostato a sali fusi per confronto con termometro campione a resistenza di platino
- +600 .. +1064 °C In forno a blocco comparatore per confronto con termocoppia campione al platino

LT cal® CALIBRATORI DI TEMPERATURA

Sono certificati di calibrazione a basso costo, in alternativa ai certificati **ACCREDIA**. Comunque, le procedure di calibrazione applicate sono state realizzate in accordo con le linee guida EAL-R2 (European cooperation for Accreditation of Laboratories) ed alla UNI CEI EN 45000 (general criteria for the operation of testing laboratories).

La certificazione dei sistemi di calibrazione per sensori a termocoppia, consiste nella esecuzione di prove che valutino le prestazioni dello strumento calibratore, sia come misuratore di forze termoelettromotrici, sia come misuratore delle stesse.

Per fare ciò, si utilizzano dei calibratori di tensione tarati dal centro nazionale "ISTITUTO NAZIONALE G. FERRARIS", ciò assicura la tracciabilità dei campioni primari utilizzati. Di norma è sufficiente tarare uno strumento su una o due scale (si intende per scala, un tipo di linearizzazione esempio TC K e/o TC J). È comunque possibile su richiesta, certificare i calibratori, su qualsiasi scala e per qualsiasi tipo di termocoppia. (J K T R S B C G D U L N E F)

10	non disp.	XC 10TCRN
10	non disp.	XC 12TCRN
6	non disp.	
	6	6 non disp.

I punti di temperatura devono essere indicati al momento dell'ordine.

LT CAL® INDICATORI

Sono certificati di calibrazione a basso costo, in alternativa ai certificati **ACCREDIA**. Comunque, le procedure di calibrazione applicate sono state realizzate in accordo con le linee guida EAL-R2 (European cooperation for Accreditation of Laboratories) ed alla UNI CEI EN 45000 (general criteria for the operation of testing laboratories).

È possibile effettuare la taratura di qualsiasi tipo di indicatore di temperatura, termoregolatori, registratori, dataloggers, portatili o fissi, purché predisposti per ingresso di termocoppie (J K T R S B C G D U L N E F) o termoresistenze (PT100-PT1000-PT25-Ni1000-Ni100)

Per fare ciò, si utilizzano dei calibratori di tensione tarati dal centro nazionale "ISTITUTO NAZIONALE G. FERRARIS", ciò assicura la tracciabilità dei campioni primari utilizzati.

INDICAZIONE	N° PUNTI	TABULAZIONE	CODICE ORDINE					
1 scala (qualsiasi tipo di termocoppia)	10	non disp.	XC 10TIRN					
2 scale (qualsiasi tipo di termocoppia)	10	non disp.	XC 12TIRN					
scale aggiuntive (qualsiasi tipo di termocoppia)	6	non disp.						
Punti aggiuntivi a richiesta. I punti di temperatura devono essere indicati al momento dell'ordine.								

TERMOMETRI PORTATILI

REGISTRATORI

TERMOREGISTRATORI

LT cal® IMPIANTI

Sono certificati di calibrazione a basso costo, in alternativa ai certificati **ACCREDIA**. Comunque, le procedure di calibrazione applicate sono state realizzate in accordo con le linee guida EAL-R2 (European cooperation for Accreditation of Laboratories) ed alla UNI CEI EN 45000 (general criteria for the operation of testing laboratories).

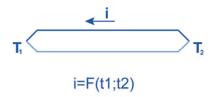
La verifica di impianti On site, esige una trattazione specifica per ogni singolo caso, in ragione della evidente peculiarità di ogni singola installazione. Si possono purtuttavia elencare alcuni tipi di prove che possono considerarsi comuni ed applicabili nella maggior parte dei casi.

MAPPATURE TERMICHE

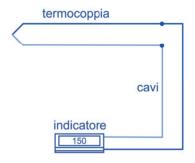
In impianti a processo chiuso (forni a camera, muffole, a crogiuolo, inceneritori etc.) è necessario verificare l'uniformità della temperatura all'interno della camera calda o di trattamento. In questi casi, è possibile posizionare fino a 20 sensori all'interno, ed eseguire un ciclo tipo. I dati relativi, vengono archiviati sotto forma di grafici e/o dati numerici, grazie ad un sistema di acquisizione collegato ad un PC, che permette oltretutto una post-elaborazione customizzata.

PROFILI TERMICI

In impianti a passaggio (forni a tunnel, a tappeto, a carro con trascinamento etc.) è necessario verificare che la temperatura raggiunta dal materiale da trattare, sia conforme sia in valore assoluto (valore raggiunto) sia in termini di tempo di permanenza. Si ottiene questo utilizzando ove possibile sonde che attraversino completamente l' impianto (ancorate al sistema di trascinamento o al materiale stesso), collegate ad un sistema di acquisizione con un PC che permette una elaborazione in forma grafica e o numerica. In alternativa dove ciò non sia possibile per la tortuosità del percorso con sistemi Wire-less anche resistenti ad alte temperature, che successivamente collegati ad un PC forniscono i dati immagazzinati in una memoria interna.


TFRMOCOPPIF

PRINCIPIO DI FUNZIONAMENTO


La temocoppia è un trasduttore elettrico passivo, (poichè per il suo funzionamento non necessita di alimentazione). Il principio fisico su cui si basa è detto effetto Seebeck (dal nome dello studioso che lo scoprì). La termocoppia si realizza con un circuito elettrico costituito da due metalli di differente natura, saldati insieme alle loro estremità. Se i due giunti si trovano a temperature differenti, nel circuito inizierà a fluire una corrente proporzionale alla differenza di temperatura fra i due giunti.

Risulta evidente, che interrompendo il circuito si instaura una forza termoelettromotrice (f.e.m.), la polarizzazione e l'intensità di detta f.e.m., dipende (a parità di t1-t2) unicamente dalla natura dei due metalli utilizzati. La giunzione che misura la temperatura è detta giunto caldo, e la giunzione di misura è detta giunto freddo o di riferimento.

In termini pratici, per misurare una temperatura in valore assoluto, si deve conoscere la temperatura del giunto freddo in modo da poter calcolare per differenza il valore di temperatura al quale si trova il giunto caldo. In ambito industriale questo compito è generalmente assolto in maniera automatica dal sistema di misura, sia esso un termoregolatore, un termometro digitale, un registratore o altro. È importante notare che i cavi di collegamento devono essere realizzati con gli stessi materiali che costituiscono il sensore, ed è altresì necessario che i collegamenti rispettino la polarità.

PRINCIPALI TIPI DI TERMOCOPPIE

TIPO	MATERIALI	RANGE [°C]	DESCRIZIONE
S	Pt vs. Pt10%Rh	-50 +1760	Termocoppia a metallo nobile. Resistente ad alte temperature in atmosfera ossidante
R	Pt vs. Pt13%Rh	-50 +1760	Termocoppia a metallo nobile. Resistente ad alte temperature in atmosfera ossidante
В	Pt6%Rh vs. Pt30%Rh	0 +1820	Termocoppia a metallo nobile. Resistente ad altissime temperature in atmosfera ossidante
J	Fe vs. Co	-200 +760	Per misurazioni a medie temperature in atmosfera ossidante o riducente
K	Cr. vs. Al	-270 +1370	Costituita da metalli base (leghe di nichel), grazie all'ampio range di utilizzo ed al basso costo, e' il sensore più diffuso. Non utilizzare in atmosfere riducenti.
Т	Cu vs. Co	-270 +400	A metallo base, permette misurazioni precise a temperature medio basse in atmosfere riducenti o ossidanti
N	Nicrosil vs. Nisil	-270 +1300	A metallo base, rappresenta per precisione e riproducibilità, l'alternativa alla tipo K
Е	Cr. vs. Co	-270 +1000	A metallo base, possiede la migliore sensibilità, e può lavorare in ambiente ossidante.

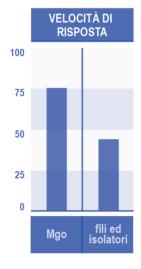
TERMOCOPPIE

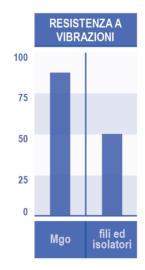
COSTRUZIONE

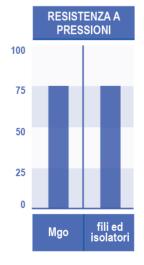
Esistono due possibili metodi di costruzione

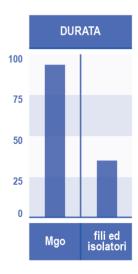
CON ISOLAMENTO MINERALE

Si utilizzano cavi isolati in ossido di Magnesio, che sono costituiti da una guaina metallica esterna all'interno della quale si trovano i conduttori isolati fra loro e rispetto alla guaina esterna con della polvere compressa di MgO. Con questo sistema, si ottengono dei sensori finiti con caratteristiche di robustezza a urti e vibrazioni di gran lunga più performanti rispetto a quelli costruiti con metodo classico. Inoltre possono essere piegati, adattandosi così ad alloggiamenti con percorsi tortuosi. Velocità di risposta, miniaturizzabilità e durata nel tempo sono altre caratteristiche peculiari dei sensori ad isolamento minerale.




I fili, sono isolati da una guaina esterna rigida per mezzo di isolatori ceramici. La guaina esterna deve provvedere ad una adeguata protezione dei conduttori, da gas o agenti corrosivi che possono trovarsi all'interno dell'ambiente di misura. È altrettanto importante scegliere a seconda della gravosità dell'impiego, conduttori di adeguato diametro e il tipo, mentre è possibile utilizzare isolatori in ceramica o in fibra di vetro, a seconda della temperatura massima da raggiungere in esercizio.



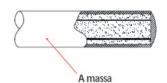


PERFORMANCES COMPARATE

TERMOCOPPIE

TIPI DI GIUNTO

Sono possibili tre diverse esecuzioni del giunto caldo o di misura:


GIUNTO CALDO ISOLATO DA MASSA

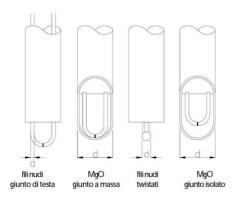
Il giunto è isolato dalla guaina esterna di protezione. Grazie a questo è scarsamente soggetto a risentire di disturbi provenienti da correnti parassite, generate da campi magnetici o da apparecchiature che lavorano sotto tensione. È un buon compromesso fra protezione dai disturbi, e velocità di risposta.

GIUNTO CALDO A MASSA

Il giunto è parte integrante della saldatura che sigilla la punta sensibile della termocoppia. Garantisce una velocità di risposta migliore, ma a causa del collegamento a terra del giunto, può risentire di disturbi sul segnale in uscita. In alcuni casi, se il sistema di misura non è galvanicamente isolato è inutilizzabile.

GIUNTO CALDO ESPOSTO

Il giunto risulta esposto alla atmosfera della zona di misura. Il tempo di risposta è di gran lunga migliore fra le tre soluzioni a parità di diametro della guaina esterna. Non è adatto a misurazioni ad alte temperature ed in ambienti aggressivi.

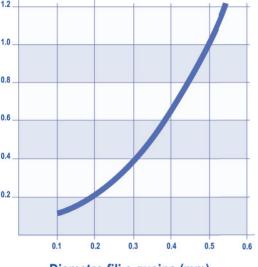


TEMPO DI RISPOSTA

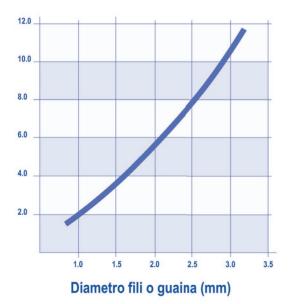
Seguono i risultati di uno studio condotto in condizioni di laboratorio, che ha come oggetto la valutazione dei tempi di risposta dei sensori a termocoppia.

La costante di tempo, si riferisce allo studio in condizioni di pressione e temperatura ambiente, in un flusso di aria in movimento a 20 m/s, per le termocoppie mostrate nella figura TR1.

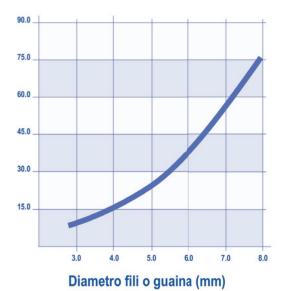
La costante di tempo o tempo di risposta, è definita come il tempo necessario al sensore per raggiungere il 63% di una variazione istantanea di temperatura. La costante di tempo, non è legata alla differenza di temperatura di un determinato salto termico.



NOTE TECNICHE


TERMOCOPPIE

I dati sono esposti graficamente nella tabella seguente. Noto il diametro di un sensore, risulta intuitiva la stima della corrispondente costante di tempo, è altrettanto semplice assumendo un tempo di risposta atteso da una termocoppia, calcolare il diametro in grado di soddisfare tale condizione.


nota: i dati riportati si riferiscono a termocoppie con giunto di tipo A o B (rif. fig. TR1), nel caso si voglia stimare il tempo di risposta di sensori con giunto di tipo C o D (rif. fig. TR1), la costante di tempo è più grande, e deve essere corretta moltiplicando per un fattore 1,5.

Diametro fili o guaina (mm)

2.2 2.0 1.8 1.6 1.4 1.2 0.6 0.65 0.7 0.75 0.8 0.85 Diametro fili o guaina (mm)

I dati riportati sono puramente indicativi, e sono da utilizzarsi per comparare le prestazioni in termini di tempo di risposta, per sensori di differenti diametri

PRECISIONE E CLASSI DI TOLLERANZA

LA TERMOTECNICA, produce in conformità a diverse normative di riferimento, e precisamente:

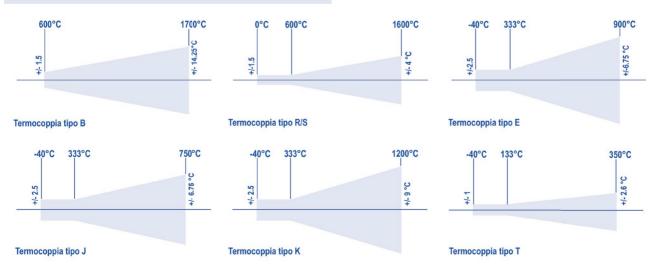
- UNI 7938
- ANSI MC96
- IEC 584

Esistono 2 classi di precisione:

- Classe 1 (special)
- Classe 2 (standard)

la seguente tabella illustra i valori di tolleranza ammessi per i diversi tipi di termocoppia alle varie temperature.

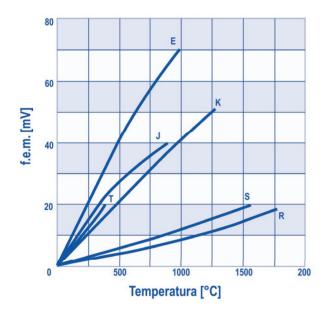
	CLASSE 1	CLASSE 2
	SPECIAL	STANDARD
TERMOCOPPIA	0,5 °C o 0.004x t	1 °C o 0.0075x t
	campo di temperatura de	lla validità della tolleranza
Т	-40 +350 °C	-40 +350 °C
TERMOCOPPIA	1,5 °C o 0.004x t	25 °C o 0.0075x t
	campo di temperatura de	lla validità della tolleranza
E J	-40 +800 °C	-40 +900 °C
K	-40 +750 °C -40 +1000 °C	-40 +750 °C -40 +1200 °C
	1 °C o [1+ 0.003(t-1100)] °C	1,5 °C o 0.0025x t
TERMOCOPPIA	campo di temperatura de	lla validità della tolleranza
R/S B	0 +1600 °C	0 +1600 °C +600 1700 °C

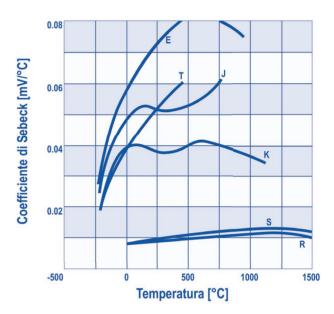

Come si può notare, l'errore massimo e minimo che un sensore non deve superare per poter essere considerato in tolleranza, è espresso come valore assoluto in °C o come valore percentuale della temperatura da misurare ovviamente si applica (a seconda della temperatura) quello più grande fra i due.

Esempio1: se misuriamo 184 °C con un sensore tipo K in classe 2, il massimo errore di misura che possiamo commettere è

+/- 2,5 °C (poiché 2,5 è più grande di 0.0075|184| = 1,38 °C)

Esempio2: se misuriamo 981 °C con un sensore tipo K in classe 1, il massimo errore di misura che possiamo commettere è


TERMOCOPPIE


LINEARIZZAZIONE E TABELLE DI CONVERSIONE

Secondo la normative di riferimento, esistono delle funzioni lineari polinomiali fornenti la relazione matematica che lega temperatura e forza termoelettromotrice (f.e.m.). Ogni termocoppia così come definita dalle tabelle, rispetta una relazione matematica che in linea generale risulta essere del tipo:

$$E = \sum_{i=1}^{n} a_i (t_{90})^i$$

Dove ai sono dei coefficienti calcolati, e t₉₀ è la temperatura misurata. (t₉₀ indica che la scala di temperatura utilizzata è la STI 90) Di norma, il campo scala di una termocoppia non può essere riprodotto con l' utilizzo di una sola curva polinomiale, quindi generalmente si trovano per la stessa termocoppia più relazioni polinomiali.

Per ulteriori informazioni consultare TABELLE di conversione f.e.m. [mV] vs. Temperatura [°C].

PRINCIPIO DI FUNZIONAMENTO

Il principio fisico su cui basano il loro funzionamento, è la variazione di resistenza al variare della temperatura, caratteristica comune a tutti i metalli. In ambito industriale, i due più utilizzati sono il Nikel ed il Platino, grazie alla loro caratteristica di notevole sensibilità (variazione della resistenza per ogni °C) e stabilità nel tempo. Comparate con la quasi totalità dei trasduttori elettrici (termocoppie, termistori) le termoresistenze vantano notevoli vantaggi in termini di precisione e ripetibilità della misura. Esistono tre categorie di termometri al platino, in relazione al tipo di tecnica costruttiva adottata:

Ceramica (T max 750 °C)

Un filamento di platino è avvolto a spirale, ed è incapsulato in in involucro di materiale ceramico. Utilizzata nella costruzione di termometri di elevata precisione o dove sia necessario utilizzare termoresistenze per misurare alte temperature.

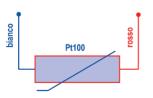
Vetro (T max 600 °C)

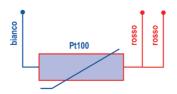
Un filamento di platino, è avvolto su un supporto in vetro, e successivamente incapsulato da un guaina protettiva esterna realizzata anch'essa in vetro. Utilizzata in applicazioni dove, precisione e riproducibilità sono indispensabili. (termometri campione)

• Film sottile (T max 450 °C)

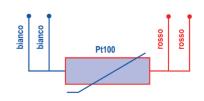
Su di un supporto in ceramica, viene depositato per diffusione un microfilm di platino, successivamente utilizzando una tecnologia laser viene creato un circuito elettrico con le adeguate caratteristiche di resistenza elettrica. Termoresistenza ceramica

Termoresistenza in vetro


Termoresistenza a film sottile


COLLEGAMENTI E METODO DI MISURA

La termoresistenza, è un trasduttore che necessità di alimentazione, poiché il sistema di misura per leggere la grandezza resistenza, prevede che una corrente di valore fisso sia fatta fluire all'interno del circuito di misura, mentre contemporaneamente deve essere letta la caduta di tensione. A questo punto con l'utilizzo della legge di Ohm, si calcola il valore di resistenza.


Esistono tre modalità di cablaggio del circuito di misura, e di conseguenza tre possibili configurazioni di collegamento dei sensori a termoresistenza:

Collegamento a due fili

Collegamento a tre fili

Collegamento a quattro fili

TERMORESISTENZE

TECNICA A 2 FILI

Risulta la soluzione meno precisa poiché, l'errore introdotto dalla lunghezza dei cavi di collegamento (resistenza di linea) non può essere compensata in alcuna maniera dal sistema di misura. In ambito industriale, il suo utilizzo si limita ad applicazioni dove la precisione richiesta è molto bassa, ed è buona norma non prendere in considerazione questa tecnica neanche per applicazioni anche generiche.

TECNICA A TRE FILI

Gran parte delle applicazioni industriali utilizza la tecnica a tre fili, poiché risulta il miglior compromesso fra costo e prestazioni. In termini pratici il collegamento a tre fili, permette di eliminare l'errore della resistenza di linea, poiché la misura della caduta di tensione dalla quale si risale al valore di resistenza viene eseguita in maniera indipendente.

TECNICA A QUATTRO FILI

È la modalità di collegamento che in assoluto fornisce la migliore precisione di lettura, è essenzialmente utilizzata per misurazioni in laboratorio o di grande affidabilità. (termometri campione primari o secondari)

COSTRUZIONE

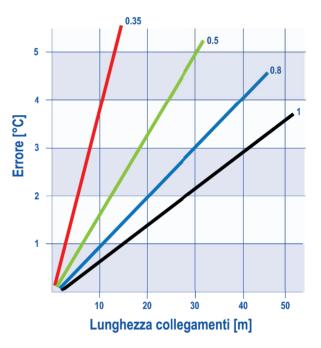
Così come per i sensori a termocoppia, esistono due possibili metodi di costruzione:

CON ISOLAMENTO MINERALE

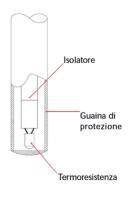
Si utilizzano cavi isolati in ossido di Magnesio, che sono costituiti da una guaina metallica esterna all'interno della quale si trovano i conduttori, isolati fra loro e rispetto alla guaina esterna con della polvere compressa di MgO. Con questo sistema si ottengono dei sensori finiti con caratteristiche di robustezza a urti e vibrazioni di gran lunga più performanti rispetto a quelli costruiti con metodo classico. Inoltre possono essere piegati, adattandosi così ad alloggiamenti con percorsi tortuosi. Velocità di risposta, miniaturizzabilità e durata nel tempo sono altre caratteristiche peculiari dei sensori ad isolamento minerale.

CON FILI CALIBRATI ED ISOLATORI

I fili, sono isolati da una guaina esterna rigida per mezzo di isolatori ceramici. La guaina esterna deve provvedere ad una adeguata protezione dei conduttori, da gas o agenti corrosivi che possono trovarsi all'interno dell'ambiente di misura. È altrettanto importante selezionare il tipo (a seconda della gravosità dell'impiego) dei conduttori di adeguato diametro d, mentre è possibile utilizzare isolatori in ceramica o in fibra di vetro, a seconda della temperatura massima da raggiungere in esercizio.

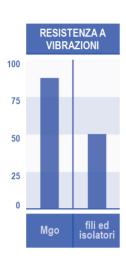

valutazione dell'errore introdotto dalla resistenza di linea nella tecnica a due fili.

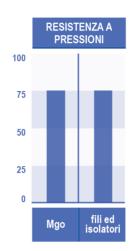
Cavo a due fili con sezione 0.35 mm²

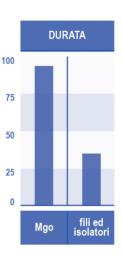

Cavo a due fili con sezione 0.8 mm²

Cavo a due fili con sezione 0.5 mm²

Cavo a due fili con sezione 1 mm²






TERMORESISTENZE

PERFORMANCES COMPARATE

PERECISIONE E CLASSI DI TOLLERANZA

LA TERMOTECNICA, produce in conformità a diverse normative di riferimento, e precisamente:

- UNI 7937
- DIN 43760
- IEC 751

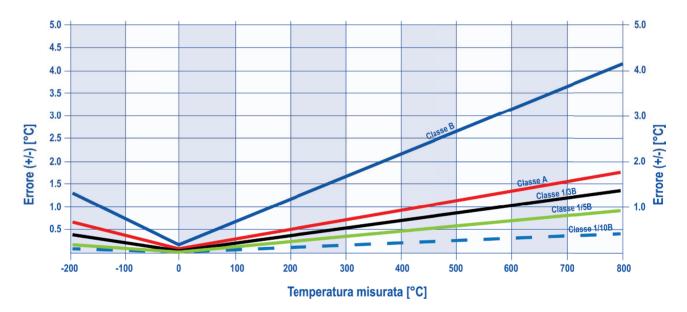
Esistono 5 classi di precisione:

- Classe B
- Classe A
- Classe 1/3B
- Classe 1/5B
- Classe 1/10B

le normative prevedono che ad ogni temperatura misurata, si possa calcolare l'errore massimo e minimo che un sensore non deve superare per poter essere considerato in tolleranza. Con le formule seguenti, si ottiene il valore assoluto dell'errore ad ogni temperatura di misura.

errore classe B	=+/- (0.30+0.005 T)
errore classe A	=+/- (0.15+0.002 T)
errore classe 1/3B	=+/- (0.10+0.0016 T)
errore classe 1/5B	=+/- (0.06+0.0010 T)
errore classe 1/10B	=+/- (0.03+0.0005 T)

|T| è il valore assoluto della temperatura in ° Celsius


Esempio: se misuriamo 125 °C con un sensore i classe A, il massimo errore che possiamo commettere è:

+/- (0.15+0.002|125|) = +/- 0.4 °C

TERMORESISTENZE

La tabella seguente, riporta i valori di errore in °C ed in Ohm, per alcune temperature per tutte le classi di tolleranza previste.

TEMP	CLAS	SSE B	CLASSE A		CLASSE 1/3B		CLASSE 1/5B		CLASSE 1/10B	
[°C]	°C	Ohm	°C	Ohm	°C	Ohm	°C	Ohm	°C	Ohm
-200	1,3	0,56	0,55	0,24	0,42	0,16	0,26	0,10	0,13	0,05
-100	0,8	0,32	0,35	0,14	0,26	0,10	0,16	0,06	0,08	0,03
0	0,3	0,12	0,15	0,06	0,10	0,04	0,06	0,02	0,03	0,01
100	0,8	0,30	0,35	0,13	0,26	0,10	0,16	0,06	0,08	0,03
200	1,3	0,48	0,55	0,20	0,42	0,16	0,26	0,10	0,13	0,05
300	1,8	0,64	0,75	0,27	0,58	0,22	0,36	0,14	0,18	0,07
400	2,3	0,79	0,95	0,33	0,74	0,29	0,46	0,18	0,23	0,09
500	2,8	0,93	1,15	0,38	0,90	0,35	0,56	0,21	0,28	0,11
600	3,3	1,06	1,35	0,43	1,06	0,41	0,66	0,25	0,33	0,13
650	3,6	1,13	1,45	0,46	1,14	0,44	0,71	0,27	0,36	0,14

LINEARIZZAZIONE E TABELLE DI CONVERSIONE

Secondo la normativa di riferimento, sono stati catalogati sensori con resistenza nominale a 0° C che varia da 5 a 1000 Ohm, purtuttavia in ambito industriale i più utilizzati sono quelli con resistenza da 100 Ohm (Pt100), e quelli con resistenza da 500 o 1000 Ohm.

La relazione matematica che lega la resistenza nominale R e la resistenza ad una temperatura t, Rt è la seguente:

- Per temperature comprese nel campo -200 .. 0 °C
- Per temperature comprese nel campo 0 .. 850 °C
- Dove le costanti A, B, C assumono i seguenti valori:

$R_t/R_0 =$	$1 + At + Bt^2 + C(t-100)t^3$
$R_t/R_0 =$	1 + At + Bt ²
A =	3,90802 x 10 ⁻³ [°C ⁻¹]
B =	-5,80200 x 10 ⁻⁷ [°C ⁻²]
C =	-4,27350 x 10 ⁻¹² [°C ⁻⁴]

CRITERI PER LA SCELTA DELLA GUAINA DI PROTEZIONE

Come già accennato, il tipo di guaina di protezione risulta fondamentale per il buon funzionamento e la durata del sensore stesso, si tratti di termocoppie o termoresistenze. In alcuni casi una non adeguata scelta del materiale della guaina può provocare durante il funzionamento del sensore ad alta temperatura, un decadimento della sua calibrazione iniziale e quindi un errore significativo della misura. I materiali comunemente utilizzati sono acciai inossidabili per alte o medie temperature, e rappresentano la scelta ottimale per la gran parte delle applicazioni. È possibile che per applicazioni particolari, in specifici settori o industrie. debbano essere utilizzati materiali a specifica (industria petrolifera, nucleare, aeronavale ed energetica) in questi casi devono essere forniti gli standard ai quali ci si riferisce per poter valutare in maniera adeguata costi, e/o limiti di quantitativi da produrre. Di seguito sono illustrate le caratteristiche dei materiali più comunemente utilizzati:

AISI 304

Acciaio inossidabile della serie 300, rappresenta la soluzione per medie temperature sia per sensori a termocoppia che a termoresistenza. Buona resistenza agli acidi nitrici, scarsa agli acidi alogenati, moderata resistenza ai solforici

Temperatura: max 650 °C

- Processi di cibi e bevande Applicazioni: - Farmaceutica - Apparati medicali

> - Processi chimici - Contenitori di miscele corrosive

AISI 316

Acciaio inossidabile della serie 300, molto usato in alternativa al AISI 304, poiché può lavorare a temperature più elevate (1000 °C) e soprattutto per le migliori caratteristiche di resistenza agli attacchi corrosivi. Sensibile alla presenza di solfuri, buona resistenza ad acidi fosforici ed acetici.

Temperatura: max 850 °C

Applicazioni: - Parti di forni - Scambiatori di calore

> - Riscaldatori - Raffinazione petrolifera

AISI 310

Acciaio inossidabile della serie 300, della categoria degli acciai refrattari è indicato in applicazioni dove la permanenza ad alta temperatura e l'ossidazione sono il problema da risolvere. Sensibile alla presenza di solfuri.

max 1100 °C Temperatura:

- Parti di forni - Supporti per riscaldatori Applicazioni:

> - Inceneritori - Sinterizzati

AISI 446

Acciaio inossidabile della serie 300, della categoria degli acciai refrattari è indicato in applicazioni dove la permanenza ad alta temperatura e l'ossidazione sono il problema da risolvere. Sensibile alla presenza di solfuri.

max 1100 °C Temperatura:

Applicazioni: - Parti di forni - Tubazioni - Inceneritori

- Industria chimica

AISI 600

Acciaio inossidabile a base di nichel e cromo, è ideale per un uso esteso alle alte temperature, resistente alla corrosione da parte di acidi, anche ad alte temperature. Ottima resistenza meccanica ad alte temperature, da non utilizzare in presenza di atmosfere solforose.

max 1150°C Temperatura:

Applicazioni: - Parti di forni - Chimica e petrolchimica

- Impianti nucleari - Macchine per alimentari

GENERALI

Guaine di protezione raccomandate in relazione alla applicazione

Le informazioni seguenti sono basate su una decennale esperienza pratica dei ns. tecnici, la tabella è da intendersi come una guida generale, nei casi specifici (su qualsiasi impianto), possono presentarsi situazioni incognite come la reale presenza di agenti aggressivi e corrosivi, vibrazioni, cicli termici etc.

T. (1) (2) (Oltrita	
Trattamenti termici		Chimica (10000)	A101.040
Ricottura		Acido acetico 50% (100°C)	AISI 316
fino a 700 °C	AISI 316/AISI 310	Alcoli	
oltre i 700 °C	AISI 446/Inc. 600	Etilico (100 °C)	AISI 304
Cementazione		Metilico (100 °C)	AISI 316
fino a 820 °C	AISI 446/AISI 310	Ammoniaca	
oltre i 820 °C	Inc. 600	Nitrati	AISI 310/AISI 304
Nitrurazione	Inc. 600/AISI 446	Solforati	AISI 310/AISI 304
Bagno di sali		Cloridrati	AISI 310/AISI 304
Cianidrici	Nichel	Bario	
Neutri	AISI 446	Cloridrato	MONEL
ad alta velocità	Ceramica	lodurato	Acciaio
Materiali non ferrosi		Solfito	Inc. 600
		Alcool Buililico	Rame
Alluminio	A1-1-100-1	Calcio	rano
Forni fusori	Acciaio/Ghisa	Clorato	AISI 316
Trattamenti termici	AISI 316/AISI 304	lodurato	AISI 316
Ottone/Bronzi	AISI 316		AISI 316
Magnesio	AISI 316/AISI 304	Acido cromico	
Zinco	Acciaio	Nitrato di rame	AISI 304
Cementi		Formaldeide	AISI 316
Impianti di produzione	Inc. 600/AISI 446	Acidi formico	AISI 316
Klinker	Inc. 600	Benzina	AISI 304/AISI 316
		Glucosio	AISI 304
Ceramica	Coromico	Glicerina	AISI 304
Fornaci	Ceramica	Glicole	AISI 304
Essiccatoi	SiC/Ceramica	Perossodo di idrogeno (100 °C)	AISI 316
Vetro		Acido lattico	
Forni fusori	Platino	<5% (100 °C)	AISI 316
Tratt. termici e cotture	Ceramica/AISI 446	>10% (100 °C)	Tantalio
	Inc. 600	Gas naturali	AISI 304
Carta		Acido nitrico	
Macchine da stampa	AISI 316/AISI 446	<50% (20 °C)	AISI 304
·	AIOI O IOIAIOI 440	<50% (100 °C)	AISI 316
Petrolio		>50% (100 °C)	Tantalio
Torri di raffinazione	AISI 304/AISI 316	Olii minerali	AISI 316
Condotte	AISI 304/AISI 316	Ossigeno	AISI 304
Colonne di frazionamento	AISI 304/AISI 316	Fenoli	AISI 304
Inceneritori		Xilene	Rame
fino a 1100 °C	AISI 446	Toluene	AISI 316
oltre i 1100 °C	Ceramica/SiC		AISI 310
Energia		Sodio	A101.040
•	A1C1 304	Bicarbonato	AISI 316
Aria calda	AISI 304	Carbonato	AISI 316
Gas liquidi	AISI 446/Inc. 600	Cloridrato	AISI 316
Riscaldatori	Inc 600/AISI 310	Potassio	
Vapore	AISI 316	Solfato	AISI 304/AISI 316
Boilers	AISI 316	Permanganato	AISI 304/AISI 316
Alimentare		Nitrato	AISI 304/AISI 316
Forni di cottura	AISI 304/AISI 316	Clorato	AISI 304/AISI 316
Trattamento vegetali	AISI 304	Carbonato	AISI 304/AISI 316
D 1 1 1 1	A101.040		

Pastorizzatori

AISI 316

GENERALI

GUAINE DI PROTEZIONE IN CERAMICA

Le protezioni in materiali ceramici, sono principalmente utilizzate a protezione di sensori a termocoppia a metallo nobile per applicazioni ad altissime temperatura (>1200 ° C), o in alternativa alle guaine metalliche anche per termocoppie a metallo base, dove l'atmosfera sia incompatibile con l'utilizzo di queste ultime. Oltre alla resistenza ad altissime temperature, sono chimicamente inerti, oltre a vantare buone caratteristiche antiabrasive e ottima rigidità dielettrica. Sono comunque da sconsigliare per le seguenti applicazioni:

- Immersione in fusioni metalliche ed in sali fusi
- Per montaggi a sbalzo superiori a 1000 mm (in verticale) o 600 mm (in orizzontale)
- In impianti pressurizzati o depressurizzati.
- In impianti con frequenti shock termici.

Di seguito sono elencati i materiali utilizzati nella costruzione di sensori standard:

Refrattario con contenuto di Allumina pari al 75%, è poroso ai gas e può lavorare fino a 1600 °. Buona resistenza agli shock termici da utilizzarsi come guaina principale o come protezione interna.

Pitagoras (DIN VDE 0335 / 610)

Refrattario a tenuta di gas fra i più economici presenta una percentuale di Allumina pari al 60% e può essere utilizzato fino a 1500 °C in ambienti corrosivi, è però sensibile alla presenza di acido fluoridrico. Da utilizzarsi come protezione esterna o interna.

Allumina (DIN VDE / 799)

Refrattario pregiato ad altissimo tenore di Allumina (99,7%) ottime caratteristiche dielettriche, resistenza a gas aggressivi riducenti come l'Azoto, acidi ed alcali, alle radiazioni nucleari, ai raggiX ed UV. Chimicamente inerte a non degassante nel vuoto. Temperatura massima consigliata 1800 °C

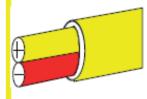
TABELLA DI SELEZIONE DEI	LE GUAINE CERAMICHE
condizioni di lavoro e massima temperatura	materiale raccomandato
Atmosfera gassosa senza acidi fluoridrici o alcali fino a 1400 °	Pitagoras (interno) Pitagoras (esterno)
Fino a 1800 °c in assenza di azione corrosiva In presenza di vapori alcalini (bagnoli di vetro e forni per ceramica) fino a 1600 °C	Allumina (interno) Allumina (esterno)
In presenza di elevati stress termici e fino a 1600 °C	Allumina (interno) Sillimantin (esterno)

CODIFICA INTERNAZIONALE DEI COLORI PER TERMOCOPPIA

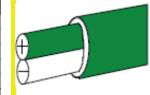
ഥ	RANGE DI TEMPERATURA (°C)	IEC 584-3 (Europea)	ANSI (USA,Canada)	DIN43710 (Germania Olanda)	BS1843 (U.K- Cecoslovacchia)	NFE 18001 (Francia)	JIS 1610-1981 (Giappone)
Rame +	-270/+400		•	•			#
J Ferro + Rame-Nichel -	-200/+760	#	#	*	#	0	#
E Nichel - Cromo + Nichel - Alluminio	-270/+1000						
K Nichel - Cromo + Nichel - Alluminio	-270 /+1372		•	#	#	#	#
Nichel - Cromo - Silicio + Nichel - Silicio - Magnesio	-270 /+1300				#		
S&R Platino - Rodio + Platino -	-50/+1768	#	•		#	#	
B Platino 30% - Rodio + Platino -	0/+1820		•	•			#

TERMOCOPPIA

K


Risposta termica termocoppia tipo E(Nichel/Cromo Vs.Rame/Nichel). Temperatura[°C] vs. F.e.m. [mV] secondo IEC 584-1. - ITS-90.

°C	0	-1	-2	-3	-4	-5	-6	-7	-8	-9	-10
-200	-5,891	-5,907	-5,922	-5,936	-5,951	-5,965	-5,980	-5,994	-6,007	-6,021	-6,035
-190	-5,730	-5,747	-5,763	-5,780	-5,797	-5,813	-5,829	-5,845	-5,861	-5,876	-5,891
-180	-5,550	-5,569	-5,588	-5,606	-5,624	-5,642	-5,660	-5,678	-5,695	-5,713	-5,730
-170	-5,354	-5,374	-5,395	-5,415	-5,435	-5,454	-5,474	-5,493	-5,512	-5,531	-5,550
-160	-5,141	-5,163	-5,185	-5,207	-5,228	-5,250	-5,271	-5,292	-5,313	-5,333	-5,354
-150	-4,913	-4,936	-4,960	-4,983	-5,006	-5,029	-5,052	-5,074	-5,097	-5,119	-5,141
-140	-4,669	-4,694	-4,719	-4,744	-4,768	-4,793	-4,817	-4,841	-4,865	-4,889	-4,913
-130	-4,411	-4,437	-4,463	-4,490	-4,516	-4,542	-4,567	-4,593	-4,618	-4,644	-4,669
-120	-4,138	-4,166	-4,194	-4,221	-4,249	-4,276	-4,303	-4,330	-4,357	-4,384	-4,411
-110	-3,852	-3,882	-3,911	-3,939	-3,968	-3,997	-4,025	-4,054	-4,082	-4,110	-4,138
-100	-3,554	-3,584	-3,614	-3,645	-3,675	-3,705	-3,734	-3,764	-3,794	-3,823	-3,852
-90	-3,243	-3,274	-3,306	-3,337	-3,368	-3,400	-3,431	-3,462	-3,492	-3,523	-3,554
-80	-2,920	-2,953	-2,986	-3,018	-3,050	-3,083	-3,115	-3,147	-3,179	-3,211	-3,243
-70	-2,587	-2,620	-2,654	-2,688	-2,721	-2,755	-2,788	-2,821	-2,854	-2,887	-2,920
-60	-2,243	-2,278	-2,312	-2,347	-2,382	-2,416	-2,450	-2,485	-2,519	-2,553	-2,587
-50	-1,889	-1,925	-1,961	-1,996	-2,032	-2,067	-2,103	-2,138	-2,173	-2,208	-2,243
-40	-1,527	-1,564	-1,600	-1,637	-1,673	-1,709	-1,745	-1,782	-1,818	-1,854	-1,889
-30	-1,156	-1,194	-1,231	-1,268	-1,305	-1,343	-1,380	-1,417	-1,453	-1,490	-1,527
-20	-0,778	-0,816	-0,854	-0,892	-0,930	-0,968	-1,006	-1,043	-1,081	-1,119	-1,156
-10	-0,392	-0,431	-0,470	-0,508	-0,547	-0,586	-0,624	-0,663	-0,701	-0,739	-0,778
0	0,000	-0,039	-0,079	-0,118	-0,157	-0,197	-0,236	-0,275	-0,314	-0,353	-0,392
°C	0	-1	-2	-3	-4	-5	-6	-7	-8	-9	-10

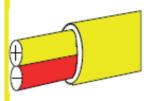

°C	0	1	2	3	4	5	6	7	8	9	10
0	0,000	0,039	0,079	0,119	0,158	0,198	0,238	0,277	0,317	0,357	0,397
10	0,397	0,437	0,477	0,517	0,557	0,597	0,637	0,677	0,718	0,758	0,798
20	0,798	0,838	0,879	0,919	0,960	1,000	1,041	1,081	1,122	1,163	1,203
30	1,203	1,244	1,285	1,326	1,366	1,407	1,448	1,489	1,530	1,571	1,612
40	1,612	1,653	1,694	1,735	1,776	1,817	1,858	1,899	1,941	1,982	2,023
50	2,023	2,064	2,106	2,147	2,188	2,230	2,271	2,312	2,354	2,395	2,436
60	2,436	2,478	2,519	2,561	2,602	2,644	2,685	2,727	2,768	2,810	2,851
70	2,851	2,893	2,934	2,976	3,017	3,059	3,100	3,142	3,184	3,225	3,267
80	3,267	3,308	3,350	3,391	3,433	3,474	3,516	3,557	3,599	3,640	3,682
90	3,682	3,723	3,765	3,806	3,848	3,889	3,931	3,972	4,013	4,055	4,096
100	4,096	4,138	4,179	4,220	4,262	4,303	4,344	4,385	4,427	4,468	4,509
110	4,509	4,550	4,591	4,633	4,674	4,715	4,756	4,797	4,838	4,879	4,920
120	4,920	4,961	5,002	5,043	5,084	5,124	5,165	5,206	5,247	5,288	5,328
130	5,328	5,369	5,410	5,450	5,491	5,532	5,572	5,613	5,653	5,694	5,735
140	5,735	5,775	5,815	5,856	5,896	5,937	5,977	6,017	6,058	6,098	6,138
150	6,138	6,179	6,219	6,259	6,299	6,339	6,380	6,420	6,460	6,500	6,540
160	6,540	6,580	6,620	6,660	6,701	6,741	6,781	6,821	6,861	6,901	6,941
170	6,941	6,981	7,021	7,060	7,100	7,140	7,180	7,220	7,260	7,300	7,340
180	7,340	7,380	7,420	7,460	7,500	7,540	7,579	7,619	7,659	7,699	7,739
190	7,739	7,779	7,819	7,859	7,899	7,939	7,979	8,019	8,059	8,099	8,138
200	8,138	8,178	8,218	8,258	8,298	8,338	8,378	8,418	8,458	8,499	8,539
210	8,539	8,579	8,619	8,659	8,699	8,739	8,779	8,819	8,860	8,900	8,940
220	8,940	8,980	9,020	9,061	9,101	9,141	9,181	9,222	9,262	9,302	9,343
230	9,343	9,383	9,423	9,464	9,504	9,545	9,585	9,626	9,666	9,707	9,747
240	9,747	9,788	9,828	9,869	9,909	9,950	9,991	10,031	10,072	10,113	10,153
250	10,153	10,194	10,235	10,276	10,316	10,357	10,398	10,439	10,480	10,520	10,561
260	10,561	10,602	10,643	10,684	10,725	10,766	10,807	10,848	10,889	10,930	10,971
270	10,971	11,012	11,053	11,094	11,135	11,176	11,217	11,259	11,300	11,341	11,382
280	11,382	11,423	11,465	11,506	11,547	11,588	11,630	11,671	11,712	11,753	11,795
290	11,795	11,836	11,877	11,919	11,960	12,001	12,043	12,084	12,126	12,167	12,209
300	12,209	12,250	12,291	12,333	12,374	12,416	12,457	12,499	12,540	12,582	12,624
°C	0	1	2	3	4	5	6	7	8	9	10

RANGE DI TEMPERATURA (-270 +1370 °C)

COLORAZIONE CAVO NORME ANSI

COLORAZIONE CAVO NORME IEC 584-3

TERMOCOPPIA


Risposta termica termocoppia tipo $E(Nichel/Cromo\ Vs.Rame/Nichel)$. Temperatura[°C] vs. F.e.m. [mV] secondo IEC 584-1. - ITS-90.

°C	0	1	2	3	4	5	6	7	8	9	10
300	12,209	12,250	12,291	12,333	12,374	12,416	12,457	12,499	12,540	12,582	12,624
310	12,624	12,665	12,707	12,748	12,790	12,831	12,873	12,915	12,956	12,998	13,040
320	13,040	13,081	13,123	13,165	13,206	13,248	13,290	13,331	13,373	13,415	13,457
330	13,457	13,498	13,540	13,582	13,624	13,665	13,707	13,749	13,791	13,833	13,874
340	13,874	13,916	13,958	14,000	14,042	14,084	14,126	14,167	14,209	14,251	14,293
350	14,293	14,335	14,377	14,419	14,461	14,503	14,545	14,587	14,629	14,671	14,713
360	14,713	14,755	14,797	14,839	14,881	14,923	14,965	15,007	15,049	15,091	15,133
370	15,133	15,175	15,217	15,259	15,301	15,343	15,385	15,427	15,469	15,511	15,554
380	15,554	15,596	15,638	15,680	15,722	15,764	15,806	15,849	15,891	15,933	15,975
390	15,975	16,017	16,059	16,102	16,144	16,186	16,228	16,270	16,313	16,355	16,397
400	16,397	16,439	16,482	16,524	16,566	16,608	16,651	16,693	16,735	16,778	16,820
410	16,820	16,862	16,904	16,947	16,989	17,031	17,074	17,116	17,158	17,201	17,243
420	17,243	17,285	17,328	17,370	17,413	17,455	17,497	17,540	17,582	17,624	17,667
430	17,667	17,709	17,752	17,794	17,837	17,879	17,921	17,964	18,006	18,049	18,091
440	18,091	18,134	18,176	18,218	18,261	18,303	18,346	18,388	18,431	18,473	18,516
450	18,516	18,558	18,601	18,643	18,686	18,728	18,771	18,813	18,856	18,898	18,941
460	18,941	18,983	19,026	19,068	19,111	19,154	19,196	19,239	19,281	19,324	19,366
470	19,366	19,409	19,451	19,494	19,537	19,579	19,622	19,664	19,707	19,750	19,792
480	19,792	19,835	19,877	19,920	19,962	20,005	20,048	20,090	20,133	20,175	20,218
			20,303	20,346		171			114.54		20,644
490	20,218	20,261		-	20,389	20,431	20,474	20,516	20,559	20,602	
500	20,644	20,687	20,730	20,772	20,815	20,857	20,900	20,943	20,985	21,028	21,071
510	21,071	21,113	21,156	21,199	21,241	21,284	21,326	21,369	21,412	21,454	21,497
520	21,497	21,540	21,582	21,625	21,668	21,710	21,753	21,796	21,838	21,881	21,924
530	21,924	21,966	22,009	22,052	22,094	22,137	22,179	22,222	22,265	22,307	22,350
540	22,350	22,393	22,435	22,478	22,521	22,563	22,606	22,649	22,691	22,734	22,776
550	22,776	22,819	22,862	22,904	22,947	22,990	23,032	23,075	23,117	23,160	23,203
560	23,203	23,245	23,288	23,331	23,373	23,416	23,458	23,501	23,544	23,586	23,629
570	23,629	23,671	23,714	23,757	23,799	23,842	23,884	23,927	23,970	24,012	24,055
580	24,055	24,097	24,140	24,182	24,225	24,267	24,310	24,353	24,395	24,438	24,480
590	24,480	24,523	24,565	24,608	24,650	24,693	24,735	24,778	24,820	24,863	24,905
600	24,905	24,948	24,990	25,033	25,075	25,118	25,160	25,203	25,245	25,288	25,330
610	25,330	25,373	25,415	25,458	25,500	25,543	25,585	25,627	25,670	25,712	25,755
620	25,755	25,797	25,840	25,882	25,924	25,967	26,009	26,052	26,094	26,136	26,179
630	26,179	26,221	26,263	26,306	26,348	26,390	26,433	26,475	26,517	26,560	26,602
640	26,602	26,644	26,687	26,729	26,771	26,814	26,856	26,898	26,940	26,983	27,025
650	27,025	27,067	27,109	27,152	27,194	27,236	27,278	27,320	27,363	27,405	27,447
660	27,447	27,489	27,531	27,574	27,616	27,658	27,700	27,742	27,784	27,826	27,869
670	27,869	27,911	27,953	27,995	28,037	28,079	28,121	28,163	28,205	28,247	28,289
680	28,289	28,332	28,374	28,416	28,458	28,500	28,542	28,584	28,626	28,668	28,710
690	28,710	28,752	28,794	28,835	28,877	28,919	28,961	29,003	29,045	29,087	29,129
700	29,129	29,171	29,213	29,255	29,297	29,338	29,380	29,422	29,464	29,506	29,548
710	29,548	29,589	29,631	29,673	29,715	29,757	29,798	29,840	29,882	29,924	29,965
720	29,965	30,007	30,049	30,090	30,132	30,174	30,216	30,257	30,299	30,341	30,382
730	30,382	30,424	30,466	30,507	30,549	30,590	30,632	30,674	30,715	30,757	30,798
			7 7 7 7 7 7 7 7		111111111111111111111111111111111111111					31,172	
740	30,798	30,840	30,881	30,923	30,964	31,006	31,047	31,089	31,130		31,213
750	31,213	31,255	31,296	31,338	31,379	31,421	31,462	31,504	31,545	31,586	31,628
760	31,628	31,669	31,710	31,752	31,793	31,834	31,876	31,917	31,958	32,000	32,041
770	32,041	32,082	32,124	32,165	32,206	32,247	32,289	32,330	32,371	32,412	32,453
780	32,453	32,495	32,536	32,577	32,618	32,659	32,700	32,742	32,783	32,824	32,865
790	32,865	32,906	32,947	32,988	33,029	33,070	33,111	33,152	33,193	33,234	33,275
800	33,275	33,316	33,357	33,398	33,439	33,480	33,521	33,562	33,603	33,644	33,685
810	33,685	33,726	33,767	33,808	33,848	33,889	33,930	33,971	34,012	34,053	34,093
820	34,093	34,134	34,175	34,216	34,257	34,297	34,338	34,379	34,420	34,460	34,501
830	34,501	34,542	34,582	34,623	34,664	34,704	34,745	34,786	34,826	34,867	34,908
840	34,908	34,948	34,989	35,029	35,070	35,110	35,151	35,192	35,232	35,273	35,313
850	35,313	35,354	35,394	35,435	35,475	35,516	35,556	35,596	35,637	35,677	35,718


K

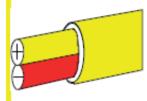
RANGEDITEMPERATURA (-270 +1370 °C)

COLORAZIONE CAVO NORME ANSI

COLORAZIONE CAVO NORME IEC 584-3

TERMOCOPPIA

Risposta termica termocoppia tipo E(Nichel/Cromo Vs.Rame/Nichel). Temperatura[°C] vs. F.e.m.


°C	0	1	2	3	4	5	6	7	8	9	10
850	35,313	35,354	35,394	35,435	35,475	35,516	35,556	35,596	35,637	35,677	35,718
860	35,718	35,758	35,798	35,839	35,879	35,920	35,960	36,000	36,041	36,081	36,121
870	36,121	36,162	36,202	36,242	36,282	36,323	36,363	36,403	36,443	36,484	36,524
880	36,524	36,564	36,604	36,644	36,685	36,725	36,765	36,805	36,845	36,885	36,925
890	36,925	36,965	37,006	37,046	37,086	37,126	37,166	37,206	37,246	37,286	37,326
900	37,326	37,366	37,406	37,446	37,486	37,526	37,566	37,606	37,646	37,686	37,725
910	37,725	37,765	37,805	37,845	37,885	37,925	37,965	38,005	38,044	38,084	38,124
920	38,124	38,164	38,204	38,243	38,283	38,323	38,363	38,402	38,442	38,482	38,522
930	38,522	38,561	38,601	38,641	38,680	38,720	38,760	38,799	38,839	38,878	38,918
940	38,918	38,958	38,997	39,037	39,076	39,116	39,155	39,195	39,235	39,274	39,314
950	39,314	39,353	39,393	39,432	39,471	39,511	39,550	39,590	39,629	39,669	39,708
960	39,708	39,747	39,787	39,826	39,866	39,905	39,944	39,984	40,023	40,062	40,101
970	40,101	40,141	40,180	40,219	40,259	40,298	40,337	40,376	40,415	40,455	40,494
980	40,494	40,533	40,572	40,611	40,651	40,690	40,729	40,768	40,807	40,846	40,885
990	40,885	40,924	40,963	41,002	41,042	41,081	41,120	41,159	41,198	41,237	41,276
1000	41,276	41,315	41,354	41,393	41,431	41,470	41,509	41,548	41,587	41,626	41,665
1010	41,665	41,704	41,743	41,781	41,820	41,859	41,898	41,937	41,976	42,014	42,053
1020	42,053	42,092	42,131	42,169	42,208	42,247	42,286	42,324	42,363	42,402	42,440
1030	42,440	42,479	42,518	42,556	42,595	42,633	42,672	42,711	42,749	42,788	42,826
1040	42,826	42,865	42,903	42,942	42,980	43,019	43,057	43,096	43,134	43,173	43,211
1050	43,211	43,250	43,288	43,327	43,365	43,403	43,442	43,480	43,518	43,557	43,595
1060	43,595	43,633	43,672	43,710	43,748	43,787	43,825	43,863	43,901	43,940	43,978
1070	43,978	44,016	44,054	44,092	44,130	44,169	44,207	44,245	44,283	44,321	44,359
1080	44,359	44,397	44,435	44,473	44,512	44,550	44,588	44,626	44,664	44,702	44,740
1090	44,740	44,778	44,816	44,853	44,891	44,929	44,967	45,005	45,043	45,081	45,119
1100	45,119	45,157	45,194	45,232	45,270	45,308	45,346	45,383	45,421	45,459	45,497
1110	45,497	45,534	45,572	45,610	45,647	45,685	45,723	45,760	45,798	45,836	45,873
1120	45,873	45,911	45,948	45,986	46,024	46,061	46,099	46,136	46,174	46,211	46,249
1130	46,249	46,286	46,324	46,361	46,398	46,436	46,473	46,511	46,548	46,585	46,623
1140	46,623	46,660	46,697	46,735	46,772	46,809	46,847	46,884	46,921	46,958	46,995
1150	46,995	47,033	47,070	47,107	47,144	47,181	47,218	47,256	47,293	47,330	47,367
1160	47,367	47,404	47,441	47,478	47,515	47,552	47,589	47,626	47,663	47,700	47,737
1170	47,737	47,774	47,811	47,848	47,884	47,921	47,958	47,995	48,032	48,069	48,105
1180	48,105	48,142	48,179	48,216	48,252	48,289	48,326	48,363	48,399	48,436	48,473
1190	48,473	48,509	48,546	48,582	48,619	48,656	48,692	48,729	48,765	48,802	48,838
1200	48,838	48,875	48,911	48,948	48,984	49,021	49,057	49,093	49,130	49,166	49,202
1210	49,202	49,239	49,275	49,311	49,348	49,384	49,420	49,456	49,493	49,529	49,565
1220	49,565	49,601	49,637	49,674	49,710	49,746	49,782	49,818	49,854	49,890	49,926
1230	49,926	49,962	49,998	50,034	50,070	50,106	50,142	50,178	50,214	50,250	50,286
1240	50,286	50,322	50,358	50,393	50,429	50,465	50,501	50,537	50,572	50,608	50,644
1250	50,644	50,680	50,715	50,751	50,787	50,822	50,858	50,894	50,929	50,965	51,000
1260	51,000	51,036	51,071	51,107	51,142	51,178	51,213	51,249	51,284	51,320	51,355
1270	51,355	51,391	51,426	51,461	51,497	51,532	51,567	51,603	51,638	51,673	51,708
°C	0	1	2	3	4	5	6	7	8	9	10

[mV] secondo IEC 584-1. - ITS-90.

K

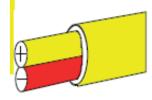
RANGE DI TEMPERATURA (-270 +1370 °C)

COLORAZIONE CAVO NORME ANSI

COLORAZIONE CAVO NORME IEC 584-3

TABELLE

TERMOCOPPIA


K

Risposta termica termocoppia tipo E(Nichel/Cromo Vs.Rame/Nichel). Temperatura[°C] vs. F.e.m. [mV] secondo IEC 584-1. - ITS-90.

°C	0	1	2	3	4	5	6	7	8	9	10
1270	51,355	51,391	51,426	51,461	51,497	51,532	51,567	51,603	51,638	51,673	51,708
1280	51,708	51,744	51,779	51,814	51,849	51,885	51,920	51,955	51,990	52,025	52,060
1290	52,060	52,095	52,130	52,165	52,200	52,235	52,270	52,305	52,340	52,375	52,410
1300	52,410	52,445	52,480	52,515	52,550	52,585	52,620	52,654	52,689	52,724	52,759
1310	52,759	52,794	52,828	52,863	52,898	52,932	52,967	53,002	53,037	53,071	53,106
1320	53,106	53,140	53,175	53,210	53,244	53,279	53,313	53,348	53,382	53,417	53,451
1330	53,451	53,486	53,520	53,555	53,589	53,623	53,658	53,692	53,727	53,761	53,795
1340	53,795	53,830	53,864	53,898	53,932	53,967	54,001	54,035	54,069	54,104	54,138
1350	54,138	54,172	54,206	54,240	54,274	54,308	54,343	54,377	54,411	54,445	54,479
1360	54,479	54,513	54,547	54,581	54,615	54,649	54,683	54,717	54,751	54,785	54,819
1370	54,819	54,852	54,886	54,920	54,954	54,988	55,022	55,056	55,089	55,123	55,157
°C	0	1	2	3	4	5	6	7	8	9	10

RANGE DI TEMPERATURA (-270 +1370 °C)

COLORAZIONE CAVO NORME ANSI

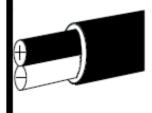
Risposta termica termocoppia tipo J(Ferro-Rame/Nichel). Temperatura[$^{\circ}$ C] vs. F.e.m. [mV] secondo IEC 584-1-ITS-90 giunto di riferimento 0 $^{\circ}$ C

°C	0	-1	-2	-3	-4	-5	-6	-7	-8	-9	-10
-200	-7,890										
-190	-7,659	-7,683	-7,707	-7,731	-7,755	-7,778	-7,801	-7,824	-7,846	-7,868	-7,890
-180	-7,403	-7,429	-7,456	-7,482	-7,508	-7,534	-7,559	-7,585	-7,610	-7,634	-7,659
-170	-7,123	-7,152	-7,181	-7,209	-7,237	-7,265	-7,293	-7,321	-7,348	-7,376	-7,403
-160	-6,821	-6,853	-6,883	-6,914	-6,944	-6,975	-7,005	-7,035	-7,064	-7,094	-7,123
-150	-6,500	-6,533	-6,566	-6,598	-6,631	-6,663	-6,695	-6,727	-6,759	-6,790	-6,821
-140	-6,159	-6,194	-6,229	-6,263	-6,298	-6,332	-6,366	-6,400	-6,433	-6,467	-6,500
-130	-5,801	-5,838	-5,874	-5,910	-5,946	-5,982	-6,018	-6,054	-6,089	-6,124	-6,159
-120	-5,426	-5,465	-5,503	-5,541	-5,578	-5,616	-5,653	-5,690	-5,727	-5,764	-5,801
-110	-5,037	-5,076	-5,116	-5,155	-5,194	-5,233	-5,272	-5,311	-5,350	-5,388	-5,426
-100	-4,633	-4,674	-4,714	-4,755	-4,796	-4,836	-4,877	-4,917	-4,957	-4,997	-5,037
-90	-4,215	-4,257	-4,300	-4,342	-4,384	-4,425	-4,467	-4,509	-4,550	-4,591	-4,633
-80	-3,786	-3,829	-3,872	-3,916	-3,959	-4,002	-4,045	-4,088	-4,130	-4,173	-4,215
-70	-3,344	-3,389	-3,434	-3,478	-3,522	-3,566	-3,610	-3,654	-3,698	-3,742	-3,786
-60	-2,893	-2,938	-2,984	-3,029	-3,075	-3,120	-3,165	-3,210	-3,255	-3,300	-3,344
-50	-2,431	-2,478	-2,524	-2,571	-2,617	-2,663	-2,709	-2,755	-2,801	-2,847	-2,893
-40	-1,961	-2,008	-2,055	-2,103	-2,150	-2,197	-2,244	-2,291	-2,338	-2,385	-2,431
-30	-1,482	-1,530	-1,578	-1,626	-1,674	-1,722	-1,770	-1,818	-1,865	-1,913	-1,961
-20	-0,995	-1,044	-1,093	-1,142	-1,190	-1,239	-1,288	-1,336	-1,385	-1,433	-1,482
-10	-0,501	-0,550	-0,600	-0,650	-0,699	-0,749	-0,798	-0,847	-0,896	-0,946	-0,995
0	0,000	-0,050	-0,101	-0,151	-0,201	-0,251	-0,301	-0,351	-0,401	-0,451	-0,501
°C	0	-1	-2	-3	-4	-5	-6	-7	-8	-9	-10

°C	0	1	2	3	4	5	6	7	8	9	10
0	0,000	0,050	0,101	0,151	0,202	0,253	0,303	0,354	0,405	0,456	0,507
10	0,507	0,558	0,609	0,660	0,711	0,762	0,814	0,865	0,916	0,968	1,019
20	1,019	1,071	1,122	1,174	1,226	1,277	1,329	1,381	1,433	1,485	1,537
30	1,537	1,589	1,641	1,693	1,745	1,797	1,849	1,902	1,954	2,006	2,059
40	2,059	2,111	2,164	2,216	2,269	2,322	2,374	2,427	2,480	2,532	2,585
50	2,585	2,638	2,691	2,744	2,797	2,850	2,903	2,956	3,009	3,062	3,116
60	3,116	3,169	3,222	3,275	3,329	3,382	3,436	3,489	3,543	3,596	3,650
70	3,650	3,703	3,757	3,810	3,864	3,918	3,971	4,025	4,079	4,133	4,187
80	4,187	4,240	4,294	4,348	4,402	4,456	4,510	4,564	4,618	4,672	4,726
90	4,726	4,781	4,835	4,889	4,943	4,997	5,052	5,106	5,160	5,215	5,269
100	5,269	5,323	5,378	5,432	5,487	5,541	5,595	5,650	5,705	5,759	5,814
110	5,814	5,868	5,923	5,977	6,032	6,087	6,141	6,196	6,251	6,306	6,360
120	6,360	6,415	6,470	6,525	6,579	6,634	6,689	6,744	6,799	6,854	6,909
130	6,909	6,964	7,019	7,074	7,129	7,184	7,239	7,294	7,349	7,404	7,459
140	7,459	7,514	7,569	7,624	7,679	7,734	7,789	7,844	7,900	7,955	8,010
150	8,010	8,065	8,120	8,175	8,231	8,286	8,341	8,396	8,452	8,507	8,562
160	8,562	8,618	8,673	8,728	8,783	8,839	8,894	8,949	9,005	9,060	9,115
170	9,115	9,171	9,226	9,282	9,337	9,392	9,448	9,503	9,559	9,614	9,669
180	9,669	9,725	9,780	9,836	9,891	9,947	10,002	10,057	10,113	10,168	10,224
190	10,224	10,279	10,335	10,390	10,446	10,501	10,557	10,612	10,668	10,723	10,779
200	10,779	10,834	10,890	10,945	11,001	11,056	11,112	11,167	11,223	11,278	11,334
210	11,334	11,389	11,445	11,501	11,556	11,612	11,667	11,723	11,778	11,834	11,889
220	11,889	11,945	12,000	12,056	12,111	12,167	12,222	12,278	12,334	12,389	12,445
230	12,445	12,500	12,556	12,611	12,667	12,722	12,778	12,833	12,889	12,944	13,000
240	13,000	13,056	13,111	13,167	13,222	13,278	13,333	13,389	13,444	13,500	13,555
250	13,555	13,611	13,666	13,722	13,777	13,833	13,888	13,944	13,999	14,055	14,110
260	14,110	14,166	14,221	14,277	14,332	14,388	14,443	14,499	14,554	14,609	14,665
270	14,665	14,720	14,776	14,831	14,887	14,942	14,998	15,053	15,109	15,164	15,219
280	15,219	15,275	15,330	15,386	15,441	15,496	15,552	15,607	15,663	15,718	15,773
290	15,773	15,829	15,884	15,940	15,995	16,050	16,106	16,161	16,216	16,272	16,327
300	16,327	16,383	16,438	16,493	16,549	16,604	16,659	16,715	16,770	16,825	16,881
310	16,881	16,936	16,991	17,046	17,102	17,157	17,212	17,268	17,323	17,378	17,434
320	17,434	17,489	17,544	17,599	17,655	17,710	17,765	17,820	17,876	17,931	17,986
°C	0	1	2	3	4	5	6	7	8	9	10

RANGE DI TEMPERATURA (-200 +760 °C)

COLORAZIONE CAVO NORME ANSI

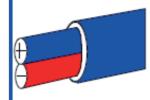

Risposta termica termocoppia tipo J(Ferro-Rame/Nichel). Temperatura[°C] vs. F.e.m. [mV] secondo IEC 584-1-ITS-90 giunto di riferimento 0 °C

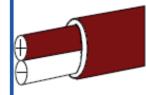
°C	0	1	2	3	4	5	6	7	8	9	10
330	17,986	18,041	18,097	18,152	18,207	18,262	18,318	18,373	18,428	18,483	18,538
340	18,538	18,594	18,649	18,704	18,759	18,814	18,870	18,925	18,980	19,035	19,090
350	19,090	19,146	19,201	19,256	19,311	19,366	19,422	19,477	19,532	19,587	19,642
360	19,642	19,697	19,753	19,808	19,863	19,918	19,973	20,028	20,083	20,139	20,194
370	20,194	20,249	20,304	20,359	20,414	20,469	20,525	20,580	20,635	20,690	20,745
380	20,745	20,800	20,855	20,911	20,966	21,021	21,076	21,131	21,186	21,241	21,297
390	21,297	21,352	21,407	21,462	21,517	21,572	21,627	21,683	21,738	21,793	21,848
400	21,848	21,903	21,958	22,014	22,069	22,124	22,179	22,234	22,289	22,345	22,400
410	22,400	22,455	22,510	22,565	22,620	22,676	22,731	22,786	22,841	22,896	22,952
420	22,952	23,007	23,062	23,117	23,172	23,228	23,283	23,338	23,393	23,449	23,504
430	23,504	23,559	23,614	23,670	23,725	23,780	23,835	23,891	23,946	24,001	24,057
440	24,057	24,112	24,167	24,223	24,278	24,333	24,389	24,444	24,499	24,555	24,610
450	24,610	24,665	24,721	24,776	24,832	24,887	24,943	24,998	25,053	25,109	25,164
460	25,164	25,220	25,275	25,331	25,386	25,442	25,497	25,553	25,608	25,664	25,720
470	25,720	25,775	25,831	25,886	25,942	25,998	26,053	26,109	26,165	26,220	26,276
480	26,276	26,332	26,387	26,443	26,499	26,555	26,610	26,666	26,722	26,778	26,834
490	26,834	26,889	26,945	27,001	27,057	27,113	27,169	27,225	27,281	27,337	27,393
500	27,393	27,449	27,505	27,561	27,617	27,673	27,729	27,785	27,841	27,897	27,953
510	27,953	28,010	28,066	28,122	28,178	28,234	28,291	28,347	28,403	28,460	28,516
520	28,516	28,572	28,629	28,685	28,741	28,798	28,854	28,911	28,967	29,024	29,080
530	29,080	29,137	29,194	29,250	29,307	29,363	29,420	29,477	29,534	29,590	29,647
540	29,647	29,704	29,761	29,818	29,874	29,931	29,988	30,045	30,102	30,159	30,216
550	30,216	30,273	30,330	30,387	30,444	30,502	30,559	30,616	30,673	30,730	30,788
560	30,788	30,845	30,902	30,960	31,017	31,074	31,132	31,189	31,247	31,304	31,362
570	31,362	31,419	31,477	31,535	31,592	31,650	31,708	31,766	31,823	31,881	31,939
580	31,939	31,997	32,055	32,113	32,171	32,229	32,287	32,345	32,403	32,461	32,519
590	32,519	32,577	32,636	32,694	32,752	32,810	32,869	32,927	32,985	33,044	33,102
600	33,102	33,161	33,219	33,278	33,337	33,395	33,454	33,513	33,571	33,630	33,689
610	33,689	33,748	33,807	33,866	33,925	33,984	34,043	34,102	34,161	34,220	34,279
620	34,279	34,338	34,397	34,457	34,516	34,575	34,635	34,694	34,754	34,813	34,873
630	34,873	34,932	34,992	35,051	35,111	35,171	35,230	35,290	35,350	35,410	35,470
640	35,470	35,530	35,590	35,650	35,710	35,770	35,830	35,890	35,950	36,010	36,071
650	36,071	36,131	36,191	36,252	36,312	36,373	36,433	36,494	36,554	36,615	36,675
660	36,675	36,736	36,797	36,858	36,918	36,979	37,040	37,101	37,162	37,223	37,284
670	37,284	37,345	37,406	37,467	37,528	37,590	37,651	37,712	37,773	37,835	37,896
680	37,896	37,958	38,019	38,081	38,142	38,204	38,265	38,327	38,389	38,450	38,512
690	38,512	38,574	38,636	38,698	38,760	38,822	38,884	38,946	39,008	39,070	39,132
700	39,132	39,194	39,256	39,318	39,381	39,443	39,505	39,568	39,630	39,693	39,755
710	39,755	39,818	39,880	39,943	40,005	40,068	40,131	40,193	40,256	40,319	40,382
720	40,382	40,445	40,508	40,570	40,633	40,696	40,759	40,822	40,886	40,949	41,012
730	41,012	41,075	41,138	41,201	41,265	41,328	41,391	41,455	41,518	41,581	41,645
740	41,645	41,708	41,772	41,835	41,899	41,962	42,026	42,090	42,153	42,217	42,281
750	42,281	42,344	42,408	42,472	42,536	42,599	42,663	42,727	42,791	42,855	42,919
760	42,919										
°C	0	1	2	3	4	5	6	7	8	9	10
1.7					10.0		100		100	100	1000

RANGE DITEMPERATURA (-270 +760 °C)

COLORAZIONE CAVO NORME ANSI

Т


Risposta termica termocoppia tipo T(Rame Vs.Rame/Nichel). Temperatura[$^{\circ}$ C] vs. F.e.m. [mV] secondo IEC 584-1- ITS-90 giunto di riferimento 0 $^{\circ}$ C


°C	0	-1	-2	-3	-4	-5	-6	-7	-8	-9	-10
270	-6,258										
260	-6,232	-6,236	-6,239	-6,242	-6,245	-6,248	-6,251	-6,253	-6,255	-6,256	-6,258
-250	-6,180	-6,187	-6,193	-6,198	-6,204	-6,209	-6,214	-6,219	-6,223	-6,228	-6,232
-240	-6,105	-6,114	-6,122	-6,130	-6,138	-6,146	-6,153	-6,160	-6,167	-6,174	-6,180
-230	-6,007	-6,017	-6,028	-6,038	-6,049	-6,059	-6,068	-6,078	-6,087	-6,096	-6,105
220	-5,888	-5,901	-5,914	-5,926	-5,938	-5,950	-5,962	-5,973	-5,985	-5,996	-6,007
210	-5,753	-5,767	-5,782	-5,795	-5,809	-5,823	-5,836	-5,850	-5,863	-5,876	-5,888
-200	-5,603	-5,619	-5,634	-5,650	-5,665	-5,680	-5,695	-5,710	-5,724	-5,739	-5,753
190	-5,439	-5,456	-5,473	-5,489	-5,506	-5,523	-5,539	-5,555	-5,571	-5,587	-5,603
-180	-5,261	-5,279	-5,297	-5,316	-5,334	-5,351	-5,369	-5,387	-5,404	-5,421	-5,439
-170	-5,070	-5,089	-5,109	-5,128	-5,148	-5,167	-5,186	-5,205	-5,224	-5,242	-5,261
-160	-4,865	-4,886	-4,907	-4,928	-4,949	-4,969	-4,989	-5,010	-5,030	-5,050	-5,070
150	-4,648	-4,671	-4,693	-4,715	-4,737	-4,759	-4,780	-4,802	-4,823	-4,844	-4,865
140	-4,419	-4,443	-4,466	-4,489	-4,512	-4,535	-4,558	-4,581	-4,604	-4,626	-4,648
130	-4,177	-4,202	-4,226	-4,251	-4,275	-4,300	-4,324	-4,348	-4,372	-4,395	-4,419
120	-3,923	-3,949	-3,975	-4,000	-4,026	-4,052	-4,077	-4,102	-4,127	-4,152	-4,177
110	-3,657	-3,684	-3,711	-3,738	-3,765	-3,791	-3,818	-3,844	-3,871	-3,897	-3,923
100	-3,379	-3,407	-3,435	-3,463	-3,491	-3,519	-3,547	-3,574	-3,602	-3,629	-3,657
-90	-3,089	-3,118	-3,148	-3,177	-3,206	-3,235	-3,264	-3,293	-3,322	-3,350	-3,379
-80	-2,788	-2,818	-2,849	-2,879	-2,910	-2,940	-2,970	-3,000	-3,030	-3,059	-3,089
-70	-2,476	-2,507	-2,539	-2,571	-2,602	-2,633	-2,664	-2,695	-2,726	-2,757	-2,788
-60	-2,153	-2,186	-2,218	-2,251	-2,283	-2,316	-2,348	-2,380	-2,412	-2,444	-2,476
-50	-1,819	-1,853	-1,887	-1,920	-1,954	-1,987	-2,021	-2,054	-2,087	-2,120	-2,153
-40	-1,475	-1,510	-1,545	-1,579	-1,614	-1,648	-1,683	-1,717	-1,751	-1,785	-1,819
-30	-1,121	-1,157	-1,192	-1,228	-1,264	-1,299	-1,335	-1,370	-1,405	-1,440	-1,475
-20	-0,757	-0,794	-0,830	-0,867	-0,904	-0,940	-0,976	-1,013	-1,049	-1,085	-1,121
-10	-0,383	-0,421	-0,459	-0,496	-0,534	-0,571	-0,608	-0,646	-0,683	-0,720	-0,757
0	0,000	-0,039	-0,077	-0,116	-0,154	-0,193	-0,231	-0,269	-0,307	-0,345	-0,383
°C	0	-1	-2	-3	-4	-5	-6	-7	-8	.9	-10

°C	0	1	2	3	4	5	6	7	8	9	10
0	0,000	0,039	0,078	0,117	0,156	0,195	0,234	0,273	0,312	0,352	0,391
10	0,391	0,431	0,470	0,510	0,549	0,589	0,629	0,669	0,709	0,749	0,790
20	0,790	0,830	0,870	0,911	0,951	0,992	1,033	1,074	1,114	1,155	1,196
30	1,196	1,238	1,279	1,320	1,362	1,403	1,445	1,486	1,528	1,570	1,612
40	1,612	1,654	1,696	1,738	1,780	1,823	1,865	1,908	1,950	1,993	2,036
50	2,036	2,079	2,122	2,165	2,208	2,251	2,294	2,338	2,381	2,425	2,468
60	2,468	2,512	2,556	2,600	2,643	2,687	2,732	2,776	2,820	2,864	2,909
70	2,909	2,953	2,998	3,043	3,087	3,132	3,177	3,222	3,267	3,312	3,358
80	3,358	3,403	3,448	3,494	3,539	3,585	3,631	3,677	3,722	3,768	3,814
90	3,814	3,860	3,907	3,953	3,999	4,046	4,092	4,138	4,185	4,232	4,279
100	4,279	4,325	4,372	4,419	4,466	4,513	4,561	4,608	4,655	4,702	4,750
110	4,750	4,798	4,845	4,893	4,941	4,988	5,036	5,084	5,132	5,180	5,228
120	5,228	5,277	5,325	5,373	5,422	5,470	5,519	5,567	5,616	5,665	5,714
130	5,714	5,763	5,812	5,861	5,910	5,959	6,008	6,057	6,107	6,156	6,206
140	6,206	6,255	6,305	6,355	6,404	6,454	6,504	6,554	6,604	6,654	6,704
150	6,704	6,754	6,805	6,855	6,905	6,956	7,006	7,057	7,107	7,158	7,209
160	7,209	7,260	7,310	7,361	7,412	7,463	7,515	7,566	7,617	7,668	7,720
170	7,720	7,771	7,823	7,874	7,926	7,977	8,029	8,081	8,133	8,185	8,237
180	8,237	8,289	8,341	8,393	8,445	8,497	8,550	8,602	8,654	8,707	8,759
190	8,759	8,812	8,865	8,917	8,970	9,023	9,076	9,129	9,182	9,235	9,288
200	9,288	9,341	9,395	9,448	9,501	9,555	9,608	9,662	9,715	9,769	9,822
210	9,822	9,876	9,930	9,984	10,038	10,092	10,146	10,200	10,254	10,308	10,362
220	10,362	10,417	10,471	10,525	10,580	10,634	10,689	10,743	10,798	10,853	10,907
230	10,907	10,962	11,017	11,072	11,127	11,182	11,237	11,292	11,347	11,403	11,458
240	11,458	11,513	11,569	11,624	11,680	11,735	11,791	11,846	11,902	11,958	12,013
250	12,013	12,069	12,125	12,181	12,237	12,293	12,349	12,405	12,461	12,518	12,574
°C	0	1	2	3	4	5	6	7	8	9	10

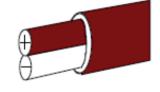
RANGE DI TEMPERATURA (-270 +400 °C)

COLORAZIONE CAVO NORME ANSI

TABELLE

TERMOCOPPIA

Risposta termica termocoppia tipo N(Nicrosil Vs. Nisil). Temperatura[°C] vs. F.e.m. [mV] secondo IEC 584-1- ITS-90 giunto di riferimento 0 °C

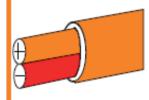

°C	0	1	2	3	4	5	6	7	8	9	10
250	12,013	12,069	12,125	12,181	12,237	12,293	12,349	12,405	12,461	12,518	12,574
260	12,574	12,630	12,687	12,743	12,799	12,856	12,912	12,969	13,026	13,082	13,139
270	13,139	13,196	13,253	13,310	13,366	13,423	13,480	13,537	13,595	13,652	13,709
280	13,709	13,766	13,823	13,881	13,938	13,995	14,053	14,110	14,168	14,226	14,283
290	14,283	14,341	14,399	14,456	14,514	14,572	14,630	14,688	14,746	14,804	14,862
300	14,862	14,920	14,978	15,036	15,095	15,153	15,211	15,270	15,328	15,386	15,445
310	15,445	15,503	15,562	15,621	15,679	15,738	15,797	15,856	15,914	15,973	16,032
320	16,032	16,091	16,150	16,209	16,268	16,327	16,387	16,446	16,505	16,564	16,624
330	16,624	16,683	16,742	16,802	16,861	16,921	16,980	17,040	17,100	17,159	17,219
340	17,219	17,279	17,339	17,399	17,458	17,518	17,578	17,638	17,698	17,759	17,819
350	17,819	17,879	17,939	17,999	18,060	18,120	18,180	18,241	18,301	18,362	18,422
360	18,422	18,483	18,543	18,604	18,665	18,725	18,786	18,847	18,908	18,969	19,030
370	19,030	19,091	19,152	19,213	19,274	19,335	19,396	19,457	19,518	19,579	19,641
380	19,641	19,702	19,763	19,825	19,886	19,947	20,009	20,070	20,132	20,193	20,255
390	20,255	20,317	20,378	20,440	20,502	20,563	20,625	20,687	20,748	20,810	20,872
400	20,872										
°C	0	1	2	3	4	5	6	7	8	9	10

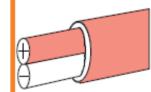
Т

RANGE DI TEMPERATURA (-270 +400 °C)

COLORAZIONE CAVO NORME ANSI

Risposta termica termocoppia tipo N(Nicrosil Vs. Nisil). Temperatura[°C] vs. F.e.m. [mV] secondo IEC 584-1- ITS-90 giunto di riferimento 0 °C


°C	0	-1	-2	-3	-4	-5	-6	-7	-8	-9	-10
-270	-4,345										
-260	-4,336	-4,337	-4,339	-4,340	-4,341	-4,342	-4,343	-4,344	-4,344	-4,345	-4,345
-250	-4,313	-4,316	-4,319	-4,321	-4,324	-4,326	-4,328	-4,330	-4,332	-4,334	-4,336
-240	-4,277	-4,281	-4,285	-4,289	-4,293	-4,297	-4,300	-4,304	-4,307	-4,310	-4,313
-230	-4,226	-4,232	-4,238	-4,243	-4,248	-4,254	-4,258	-4,263	-4,268	-4,273	-4,277
-220	-4,162	-4,169	-4,176	-4,183	-4,189	-4,196	-4,202	-4,209	-4,215	-4,221	-4,226
-210	-4,083	-4,091	-4,100	-4,108	-4,116	-4,124	-4,132	-4,140	-4,147	-4,154	-4,162
-200	-3,990	-4,000	-4,010	-4,020	-4,029	-4,038	-4,048	-4,057	-4,066	-4,074	-4,083
-190	-3,884	-3,896	-3,907	-3,918	-3,928	-3,939	-3,950	-3,960	-3,970	-3,980	-3,990
-180	-3,766	-3,778	-3,790	-3,803	-3,815	-3,827	-3,838	-3,850	-3,862	-3,873	-3,884
-170	-3,634	-3,648	-3,662	-3,675	-3,688	-3,702	-3,715	-3,728	-3,740	-3,753	-3,766
-160	-3,491	-3,506	-3,521	-3,535	-3,550	-3,564	-3,578	-3,593	-3,607	-3,621	-3,634
-150	-3,336	-3,352	-3,368	-3,384	-3,400	-3,415	-3,431	-3,446	-3,461	-3,476	-3,491
-140	-3,171	-3,188	-3,205	-3,221	-3,238	-3,255	-3,271	-3,288	-3,304	-3,320	-3,336
-130	-2,994	-3,012	-3,030	-3,048	-3,066	-3,084	-3,101	-3,119	-3,136	-3,153	-3,171
-120	-2,808	-2,827	-2,846	-2,865	-2,883	-2,902	-2,921	-2,939	-2,958	-2,976	-2,994
-110	-2,612	-2,632	-2,652	-2,672	-2,691	-2,711	-2,730	-2,750	-2,769	-2,789	-2,808
-100	-2,407	-2,428	-2,448	-2,469	-2,490	-2,510	-2,531	-2,551	-2,571	-2,592	-2,612
-90	-2,193	-2,215	-2,237	-2,258	-2,280	-2,301	-2,322	-2,344	-2,365	-2,386	-2,407
-80	-1,972	-1,995	-2,017	-2,039	-2,062	-2,084	-2,106	-2,128	-2,150	-2,172	-2,193
-70	-1,744	-1,767	-1,790	-1,813	-1,836	-1,859	-1,882	-1,905	-1,927	-1,950	-1,972
-60	-1,509	-1,533	-1,557	-1,580	-1,604	-1,627	-1,651	-1,674	-1,698	-1,721	-1,744
-50	-1,269	-1,293	-1,317	-1,341	-1,366	-1,390	-1,414	-1,438	-1,462	-1,485	-1,509
-40	-1,023	-1,048	-1,072	-1,097	-1,122	-1,146	-1,171	-1,195	-1,220	-1,244	-1,269
-30	-0,772	-0,798	-0,823	-0,848	-0,873	-0,898	-0,923	-0,948	-0,973	-0,998	-1,023
-20	-0,518	-0,544	-0,569	-0,595	-0,620	-0,646	-0,671	-0,696	-0,722	-0,747	-0,772
-10	-0,260	-0,286	-0,312	-0,338	-0,364	-0,390	-0,415	-0,441	-0,467	-0,492	-0,518
0	0,000	-0,026	-0,052	-0,078	-0,104	-0,131	-0,157	-0,183	-0,209	-0,234	-0,260
°C	0	-1	-2	-3	-4	-5	-6	-7	-8	-9	-10

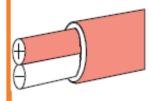

°C	0	1	2	3	4	5	6	7	8	9	10
0	0,000	0,026	0,052	0,078	0,104	0,130	0,156	0,182	0,208	0,235	0,261
10	0,261	0,287	0,313	0,340	0,366	0,393	0,419	0,446	0,472	0,499	0,525
20	0,525	0,552	0,578	0,605	0,632	0,659	0,685	0,712	0,739	0,766	0,793
30	0,793	0,820	0,847	0,874	0,901	0,928	0,955	0,983	1,010	1,037	1,065
40	1,065	1,092	1,119	1,147	1,174	1,202	1,229	1,257	1,284	1,312	1,340
50	1,340	1,368	1,395	1,423	1,451	1,479	1,507	1,535	1,563	1,591	1,619
60	1,619	1,647	1,675	1,703	1,732	1,760	1,788	1,817	1,845	1,873	1,902
70	1,902	1,930	1,959	1,988	2,016	2,045	2,074	2,102	2,131	2,160	2,189
80	2,189	2,218	2,247	2,276	2,305	2,334	2,363	2,392	2,421	2,450	2,480
90	2,480	2,509	2,538	2,568	2,597	2,626	2,656	2,685	2,715	2,744	2,774
100	2,774	2,804	2,833	2,863	2,893	2,923	2,953	2,983	3,012	3,042	3,072
110	3,072	3,102	3,133	3,163	3,193	3,223	3,253	3,283	3,314	3,344	3,374
120	3,374	3,405	3,435	3,466	3,496	3,527	3,557	3,588	3,619	3,649	3,680
130	3,680	3,711	3,742	3,772	3,803	3,834	3,865	3,896	3,927	3,958	3,989
140	3,989	4,020	4,051	4,083	4,114	4,145	4,176	4,208	4,239	4,270	4,302
150	4,302	4,333	4,365	4,396	4,428	4,459	4,491	4,523	4,554	4,586	4,618
160	4,618	4,650	4,681	4,713	4,745	4,777	4,809	4,841	4,873	4,905	4,937
170	4,937	4,969	5,001	5,033	5,066	5,098	5,130	5,162	5,195	5,227	5,259
180	5,259	5,292	5,324	5,357	5,389	5,422	5,454	5,487	5,520	5,552	5,585
190	5,585	5,618	5,650	5,683	5,716	5,749	5,782	5,815	5,847	5,880	5,913
200	5,913	5,946	5,979	6,013	6,046	6,079	6,112	6,145	6,178	6,211	6,245
210	6,245	6,278	6,311	6,345	6,378	6,411	6,445	6,478	6,512	6,545	6,579
220	6,579	6,612	6,646	6,680	6,713	6,747	6,781	6,814	6,848	6,882	6,916
230	6,916	6,949	6,983	7,017	7,051	7,085	7,119	7,153	7,187	7,221	7,255
240	7,255	7,289	7,323	7,357	7,392	7,426	7,460	7,494	7,528	7,563	7,597
250	7,597	7,631	7,666	7,700	7,734	7,769	7,803	7,838	7,872	7,907	7,941
°C	0	1	2	3	4	5	6	7	R	9	10

Λ

RANGE TEMPERATURA (-270 +1300 °C) DI

COLORAZIONE CAVO NORME ANSI

Risposta termica termocoppia tipo N(Nicrosil Vs. Nisil). Temperatura[°C] vs. F.e.m. [mV] secondo IEC 584-1- ITS-90 giunto di riferimento 0 °C

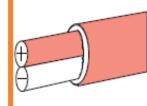

°C	0	1	2	3	4	5	6	7	8	9	10
250	7,597	7,631	7,666	7,700	7,734	7,769	7,803	7,838	7,872	7,907	7,941
260	7,941	7,976	8,010	8,045	8,080	8,114	8,149	8,184	8,218	8,253	8,288
270	8,288	8,323	8,358	8,392	8,427	8,462	8,497	8,532	8,567	8,602	8,637
280	8,637	8,672	8,707	8,742	8,777	8,812	8,847	8,882	8,918	8,953	8,988
290	8,988	9,023	9,058	9,094	9,129	9,164	9,200	9,235	9,270	9,306	9,341
300	9,341	9,377	9,412	9,448	9,483	9,519	9,554	9,590	9,625	9,661	9,696
310	9,696	9,732	9,768	9,803	9,839	9,875	9,910	9,946	9,982	10,018	10,054
320	10,054	10,089	10,125	10,161	10,197	10,233	10,269	10,305	10,341	10,377	10,413
330	10,413	10,449	10,485	10,521	10,557	10,593	10,629	10,665	10,701	10,737	10,774
340	10,774	10,810	10,846	10,882	10,918	10,955	10,991	11,027	11,064	11,100	11,136
350	11,136	11,173	11,209	11,245	11,282	11,318	11,355	11,391	11,428	11,464	11,501
360	11,501	11,537	11,574	11,610	11,647	11,683	11,720	11,757	11,793	11,830	11,867
370	11,867	11,903	11,940	11,977	12,013	12,050	12,087	12,124	12,160	12,197	12,234
380	12,234	12,271	12,308	12,345	12,382	12,418	12,455	12,492	12,529	12,566	12,603
390	12,603	12,640	12,677	12,714	12,751	12,788	12,825	12,862	12,899	12,937	12,974
400	12,974	13,011	13,048	13,085	13,122	13,159	13,197	13,234	13,271	13,308	13,346
410	13,346	13,383	13,420	13,457	13,495	13,532	13,569	13,607	13,644	13,682	13,719
420	13,719	13,756	13,794	13,831	13,869	13,906	13,944	13,981	14,019	14,056	14,094
430	14,094	14,131	14,169	14,206	14,244	14,281	14,319	14,356	14,394	14,432	14,469
440	14,469	14,507	14,545	14,582	14,620	14,658	14,695	14,733	14,771	14,809	14,846
450	14,846	14,884	14,922	14,960	14,998	15,035	15,073	15,111	15,149	15,187	15,225
460	15,225	15,262	15,300	15,338	15,376	15,414	15,452	15,490	15,528	15,566	15,604
470	15,604	15,642	15,680	15,718	15,756	15,794	15,832	15,870	15,908	15,946	15,984
480	15,984	16,022	16,060	16,099	16,137	16,175	16,213	16,251	16,289	16,327	16,366
490	16,366	16,404	16,442	16,480	16,518	16,557	16,595	16,633	16,671	16,710	16,748
500	16,748	16,786	16,824	16,863	16,901	16,939	16,978	17,016	17,054	17,093	17,131
510	17,131	17,169	17,208	17,246	17,285	17,323	17,361	17,400	17,438	17,477	17,515
520	17,515	17,554	17,592	17,630	17,669	17,707	17,746	17,784	17,823	17,861	17,900
530	17,900	17,938	17,977	18,016	18,054	18,093	18,131	18,170	18,208	18,247	18,286
540	18,286	18,324	18,363	18,401	18,440	18,479	18,517	18,556	18,595	18,633	18,672
550	18,672	18,711	18,749	18,788	18,827	18,865	18,904	18,943	18,982	19,020	19,059
560	19,059	19,098	19,136	19,175	19,214	19,253	19,292	19,330	19,369	19,408	19,447
570	19,447	19,485	19,524	19,563	19,602	19,641	19,680	19,718	19,757	19,796	19,835
580	19,835	19,874	19,913	19,952	19,990	20,029	20,068	20,107	20,146	20,185	20,224
590	20,224	20,263	20,302	20,341	20,379	20,418	20,457	20,496	20,535	20,574	20,613
600	20,613	20,652	20,691	20,730	20,769	20,808	20,847	20,886	20,925	20,964	21,003
610	21,003	21,042	21,081	21,120	21,159	21,198	21,237	21,276	21,315	21,354	21,393
620	21,393	21,432	21,471	21,510	21,549	21,588	21,628	21,667	21,706	21,745	21,784
630	21,784	21,823	21,862	21,901	21,940	21,979	22,018	22,058	22,097	22,136	22,175
640	22,175	22,214	22,253	22,292	22,331	22,370	22,410	22,449	22,488	22,527	22,566
650	22,566	22,605	22,644	22,684	22,723	22,762	22,801	22,840	22,879	22,919	22,958
660	22,958	22,997	23,036	23,075	23,115	23,154	23,193	23,232	23,271	23,311	23,350
670	23,350	23,389	23,428	23,467	23,507	23,546	23,585	23,624	23,663	23,703	23,742
680	23,742	23,781	23,820	23,860	23,899	23,938	23,977	24,016	24,056	24,095	24,134
690	24,134	24,173	24,213	24,252	24,291	24,330	24,370	24,409	24,448	24,487	24,527
700	24,527	24,566	24,605	24,644	24,684	24,723	24,762	24,801	24,841	24,880	24,919
710	24,919	24,959	24,998	25,037	25,076	25,116	25,155	25,194	25,233	25,273	25,312
720	25,312	25,351	25,391	25,430	25,469	25,508	25,548	25,587	25,626	25,666	25,705
730	25,705	25,744	25,783	25,823	25,862	25,901	25,941	25,980	26,019	26,058	26,098
740	26,098	26,137	26,176	26,216	26,255	26,294	26,333	26,373	26,412	26,451	26,491
750	26,491	26,530	26,569	26,608	26,648	26,687	26,726	26,766	26,805	26,844	26,883
760	26,883	26,923	26,962	27,001	27,041	27,080	27,119	27,158	27,198	27,237	27,276
770	27,276	27,316	27,355	27,394	27,433	27,473	27,512	27,551	27,591	27,630	27,669
780	27,669	27,708	27,748	27,787	27,826	27,866	27,905	27,944	27,983	28,023	28,062
790	28,062	28,101	28,140	28,180	28,219	28,258	28,297	28,337	28,376	28,415	28,455
800	28,455	28,494	28,533	28,572	28,612	28,651	28,690	28,729	28,769	28,808	28,847
°C	0	1	2	3	4	5	6	7	8	9	10

N

RANGE DITEMPERATURA (-270 +1300 °C)

COLORAZIONE CAVO NORME ANSI

Risposta termica termocoppia tipo N(Nicrosil Vs. Nisil). Temperatura[$^{\circ}$ C] vs. F.e.m. [mV] secondo IEC 584-1- ITS-90 giunto di riferimento 0 $^{\circ}$ C


									•		
°C	0	1	2	3	4	5	6	7	8	9	10
800	28,455	28,494	28,533	28,572	28,612	28,651	28,690	28,729	28,769	28,808	28,847
810	28,847	28,886	28,926	28,965	29,004	29,043	29,083	29,122	29,161	29,200	29,239
820	29,239	29,279	29,318	29,357	29,396	29,436	29,475	29,514	29,553	29,592	29,632
830	29,632	29,671	29,710	29,749	29,789	29,828	29,867	29,906	29,945	29,985	30,024
840	30,024	30,063	30,102	30,141	30,181	30,220	30,259	30,298	30,337	30,376	30,416
850	30,416	30,455	30,494	30,533	30,572	30,611	30,651	30,690	30,729	30,768	30,807
860	30,807	30,846	30,886	30,925	30,964	31,003	31,042	31,081	31,120	31,160	31,199
870	31,199	31,238	31,277	31,316	31,355	31,394	31,433	31,473	31,512	31,551	31,590
880	31,590	31,629	31,668	31,707	31,746	31,785	31,824	31,863	31,903	31,942	31,981
890	31,981	32,020	32,059	32,098	32,137	32,176	32,215	32,254	32,293	32,332	32,371
900	32,371	32,410	32,449	32,488	32,527	32,566	32,605	32,644	32,683	32,722	32,761
910	32,761	32,800	32,839	32,878	32,917	32,956	32,995	33,034	33,073	33,112	33,151
920	33,151	33,190	33,229	33,268	33,307	33,346	33,385	33,424	33,463	33,502	33,541
930	33,541	33,580	33,619	33,658	33,697	33,736	33,774	33,813	33,852	33,891	33,930
940	33,930	33,969	34,008	34,047	34,086	34,124	34,163	34,202	34,241	34,280	34,319
950	34,319	34,358	34,396	34,435	34,474	34,513	34,552	34,591	34,629	34,668	34,707
960	34,707	34,746	34,785	34,823	34,862	34,901	34,940	34,979	35,017	35,056	35,095
970	35,095	35,134	35,172	35,211	35,250	35,289	35,327	35,366	35,405	35,444	35,482
980	35,482	35,521	35,560	35,598	35,637	35,676	35,714	35,753	35,792	35,831	35,869
990	35,869	35,908	35,946	35,985	36,024	36,062	36,101	36,140	36,178	36,217	36,256
1000	36,256	36,294	36,333	36,371	36,410	36,449	36,487	36,526	36,564	36,603	36,641
1010	36,641	36,680	36,718	36,757	36,796	36,834	36,873	36,911	36,950	36,988	37,027
1020	37,027	37,065	37,104	37,142	37,181	37,219	37,258	37,296	37,334	37,373	37,411
1030	37,411	37,450	37,488	37,527	37,565	37,603	37,642	37,680	37,719	37,757	37,795
1040	37,795	37,834	37,872	37,911	37,949	37,987	38,026	38,064	38,102	38,141	38,179
1050	38,179	38,217	38,256	38,294	38,332	38,370	38,409	38,447	38,485	38,524	38,562
1060	38,562	38,600	38,638	38,677	38,715	38,753	38,791	38,829	38,868	38,906	38,944
1070	38,944	38,982	39,020	39,059	39,097	39,135	39,173	39,211	39,249	39,287	39,326
1080	39,326	39,364	39,402	39,440	39,478	39,516	39,554	39,592	39,630	39,668	39,706
1090	39,706	39,744	39,783	39,821	39,859	39,897	39,935	39,973	40,011	40,049	40,087
1100	40,087	40,125	40,163	40,201	40,238	40,276	40,314	40,352	40,390	40,428	40,466
1110	40,466	40,504	40,542	40,580	40,618	40,655	40,693	40,731	40,769	40,807	40,845
1120	40,845	40,883	40,920	40,958	40,996	41,034	41,072	41,109	41,147	41,185	41,223
1130	41,223	41,260	41,298	41,336	41,374	41,411	41,449	41,487	41,525	41,562	41,600
1140	41,600	41,638	41,675	41,713	41,751	41,788	41,826	41,864	41,901	41,939	41,976
1150	41,976	42,014	42,052	42,089	42,127	42,164	42,202	42,239	42,277	42,314	42,352
1160	42,352	42,390	42,427	42,465	42,502	42,540	42,577	42,614	42,652	42,689	42,727
1170	42,727	42,764	42,802	42,839	42,877	42,914	42,951	42,989	43,026	43,064	43,101
1180	43,101	43,138	43,176	43,213	43,250	43,288	43,325	43,362	43,399	43,437	43,474
1190	43,474	43,511	43,549	43,586	43,623	43,660	43,698	43,735	43,772	43,809	43,846
1200	43,846	43,884	43,921	43,958	43,995	44,032	44,069	44,106	44,144	44,181	44,218
1210	44,218	44,255	44,292	44,329	44,366	44,403	44,440	44,477	44,514	44,551	44,588
1220	44,588	44,625	44,662	44,699	44,736	44,773	44,810	44,847	44,884	44,921	44,958
1230	44,958	44,995	45,032	45,069	45,105	45,142	45,179	45,216	45,253	45,290	45,326
1240	45,326	45,363	45,400	45,437	45,474	45,510	45,547	45,584	45,621	45,657	45,694
1250	45,694	45,731	45,767	45,804	45,841	45,877	45,914	45,951	45,987	46,024	46,060
1260	46,060	46,097	46,133	46,170	46,207	46,243	46,280	46,316	46,353	46,389	46,425
1270	46,425	46,462	46,498	46,535	46,571	46,608	46,644	46,680	46,717	46,753	46,789
1280	46,789	46,826	46,862	46,898	46,935	46,971	47,007	47,043	47,079	47,116	47,152
1290	47,152	47,188	47,224	47,260	47,296	47,333	47,369	47,405	47,441	47,477	47,513
1300	47,513	,,,,,,,,				,500					,
°C	0	1	2	3	4	5	6	7	8	9	10
			-	3	-	3	3		-	3	.0

Λ

RANGE DI TEMPERATURA (-270 +1300 °C)

COLORAZIONE CAVO NORME ANSI

Risposta termica termocoppia tipo S(Platino Vs. Platino 10%Rodio). Temperatura[°C] vs. F.e.m. [mV] secondo IEC 584-1-ITS-90 giunto di riferimento 0 °C

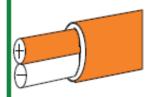
°C	0	-1	-2	-3	-4	-5	-6	-7	-8	-9	-10
-50	-0,236										
-40	-0,194	-0,199	-0,203	-0,207	-0,211	-0,215	-0,219	-0,224	-0,228	-0,232	-0,236
-30	-0,150	-0,155	-0,159	-0,164	-0,168	-0,173	-0,177	-0,181	-0,186	-0,190	-0,194
-20	-0,103	-0,108	-0,113	-0,117	-0,122	-0,127	-0,132	-0,136	-0,141	-0,146	-0,150
-10 0	-0,053 0,000	-0,058 -0,005	-0,063 -0,011	-0,068 -0,016	-0,073 -0,021	-0,078 -0,027	-0,083 -0,032	-0,088 -0,037	-0,093 -0,042	-0,098 -0,048	-0,103 -0,053
°C	0	-1	-2	-3	-4	-5	-6	-7	-8	-9	-10
°C	0	1	2	3	4	5	6	7	8	9	10
0	0,000	0,005	0,011	0,016	0,022	0,027	0,033	0,038	0,044	0,050	0,055
10	0,055	0,061	0,067	0,072	0,078	0,084	0,090	0,095	0,101	0,107	0,113
20	0,113	0,119	0,125	0,131	0,137	0,143	0,149	0,155	0,161	0,167	0,173
30	0,173	0,179	0,185	0,191	0,197	0,204	0,210	0,216	0,222	0,229	0,235
40	0,235	0,241	0,248	0,254	0,260	0,267	0,273	0,280	0,286	0,292	0,299
50	0,299	0,305	0,312	0,319	0,325	0,332	0,338	0,345	0,352	0,358	0,365
60	0,365	0,372	0,378	0,385	0,392	0,399	0,405	0,412	0,419	0,426	0,433
70	0,433	0,440	0,446	0,453	0,460	0,467	0,474	0,481	0,488	0,495	0,502
80	0,502	0,509	0,516	0,523	0,530	0,538	0,545	0,552	0,559	0,566	0,573
90	0,573	0,580	0,588	0,595	0,602	0,609	0,617	0,624	0,631	0,639	0,646
100	0,646	0,653	0,661	0,668	0.675	0,683	0,690	0,698	0,705	0,713	0,720
110	0,720	0,727	0,735	0,743	0,750	0,758	0,765	0,773	0,780	0,788	0,795
120	0,795	0,803	0,811	0,818	0,826	0,834	0,841	0,849	0,857	0,865	0,872
130	0,872	0,880	0,888	0,896	0,903	0,911	0,919	0,927	0,935	0,942	0,950
140	0,950	0,958	0,966	0.974	0,982	0,990	0,998	1,006	1,013	1,021	1,029
150	1,029	1,037	1,045	1,053	1,061	1,069	1,077	1,085	1,094	1,102	1,110
160	1,110	1,118	1,126	1,134	1,142	1,150	1,158	1,167	1,175	1,183	1,191
170	1,191	1,199	1,207	1,216	1,224	1,232	1,240	1,249	1,257	1,265	1,273
180	1,273	1,282	1,290	1,298	1,307	1,315	1,323	1,332	1,340	1,348	1,357
190	1,357	1,365	1,373	1,382	1,390	1,399	1,407	1,415	1,424	1,432	1,441
200	1,441	1,449	1,458	1,466	1,475	1,483	1,492	1,500	1,509	1,517	1,526
210	1,526	1,534	1,543	1,551	1,560	1,569	1,577	1,586	1,594	1,603	1,612
220	1,612	1,620	1,629	1,638	1,646	1,655	1,663	1,672	1,681	1,690	1,698
230	1,698	1,707	1,716	1,724	1,733	1,742	1,751	1,759	1,768	1,777	1,786
240	1,786	1,794	1,803	1,812	1,821	1,829	1,838	1,847	1,856	1,865	1,874
250	1,874	1,882	1,891	1,900	1,909	1,918	1,927	1,936	1,944	1,953	1,962
260	1,962	1,971	1,980	1,989	1,998	2,007	2,016	2,025	2,034	2,043	2,052
270	2,052	2,061	2,070	2,078	2,087	2,096	2,105	2,114	2,123	2,132	2,141
280	2,141	2,151	2,160	2,169	2,178	2,187	2,196	2,205	2,214	2,223	2,232
290	2,232	2,241	2,250	2,259	2,268	2,277	2,287	2,296	2,305	2,314	2,323
300	2,323	2,332	2,341	2,350	2,360	2,369	2,378	2,387	2,396	2,405	2,415
310	2,415	2,424	2,433	2,442	2,451	2,461	2,470	2,479	2,488	2,497	2,507
320	2,507	2,516	2,525	2,534	2,544	2,553	2,562	2,571	2,581	2,590	2,599
330	2,599	2,609	2,618	2,627	2,636	2,646	2,655	2,664	2,674	2,683	2,692
340	2,692	2,702	2,711	2,720	2,730	2,739	2,748	2,758	2,767	2,776	2,786
350	2,786	2,795	2,805	2,814	2,823	2,833	2,842	2,851	2,861	2,870	2,880
360	2,880	2,889	2,899	2,908	2,917	2,927	2,936	2,946	2,955	2,965	2,974
370	2,974	2,983	2,993	3,002	3,012	3,021	3,031	3,040	3,050	3,059	3,069
380	3,069	3,078	3,088	3,097	3,107	3,116	3,126	3,135	3,145	3,154	3,164
390	3,164	3,173	3,183	3,192	3,202	3,212	3,221	3,231	3,240	3,250	3,259
400	3,259	3,269	3,279	3,288	3,298	3,307	3,317	3,326	3,336	3,346	3,355
410	3,355	3,365	3,374	3,384	3,394	3,403	3,413	3,423	3,432	3,442	3,451
420	3,451	3,461	3,471	3,480	3,490	3,500	3,509	3,519	3,529	3,538	3,548
430	3,548	3,558	3,567	3,577	3,587	3,596	3,606	3,616	3,626	3,635	3,645
440	3,645	3,655	3,664	3,674	3,684	3,694	3,703	3,713	3,723	3,732	3,742
450	3,742	3,752	3,762	3,771	3,781	3,791	3,801	3,810	3,820	3,830	3,840
460	3,840	3,850	3,859	3,869	3,879	3,889	3,898	3,908	3,918	3,928	3,938
470	3,938	3,947	3,957	3,967	3,977	3,987	3,997	4,006	4,016	4,026	4,036
°C	0	1	2	3	4	5	6	7	8	9	10

S

RANGE DI TEMPERATURA (-50 +1768°C)

COLORAZIONE CAVO NORME ANSI

Risposta termica termocoppia tipo S(Platino Vs. Platino 10%Rodio). Temperatura[°C] vs. F.e.m. [mV] secondo IEC 584-1-ITS-90 giunto di riferimento 0 °C

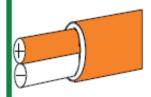

°C	0	1	2	3	4	5	6	7	8	9	10
470	3,938	3,947	3,957	3,967	3,977	3,987	3,997	4,006	4,016	4,026	4,036
480	4,036	4,046	4,056	4,065	4,075	4,085	4,095	4,105	4,115	4,125	4,134
490	4,134	4,144	4,154	4,164	4,174	4,184	4,194	4,204	4,213	4,223	4,233
500	4,233	4,243	4,253	4,263	4,273	4,283	4,293	4,303	4,313	4,323	4,332
510	4,332	4,342	4,352	4,362	4,372	4,382	4,392	4,402	4,412	4,422	4,432
520	4,432	4,442	4,452	4,462	4,472	4,482	4,492	4,502	4,512	4,522	4,532
530	4,532	4,542	4,552	4,562	4,572	4,582	4,592	4,602	4,612	4,622	4,632
540	4,632	4,642	4,652	4,662	4,672	4,682	4,692	4,702	4,712	4,722	4,732
550	4,732	4,742	4,752	4,762	4,772	4,782	4,793	4,803	4,813	4,823	4,833
560	4,833	4,843	4,853	4,863	4,873	4,883	4,893	4,904	4,914	4,924	4,934
570	4,934	4,944	4,954	4,964	4,974	4,984	4,995	5,005	5,015	5,025	5,035
580	5,035	5,045	5,055	5,066	5,076	5,086	5,096	5,106	5,116	5,127	5,137
590	5,137	5,147	5,157	5,167	5,178	5,188	5,198	5,208	5,218	5,228	5,239
600	5,239	5,249	5,259	5,269	5,280	5,290	5,300	5,310	5,320	5,331	5,341
610	5,341	5,351	5,361	5,372	5,382	5,392	5,402	5,413	5,423	5,433	5,443
620	5,443	5,454	5,464	5,474	5,485	5,495	5,505	5,515	5,526	5,536	5,546
630	5,546	5,557	5,567	5,577	5,588	5,598	5,608	5,618	5,629	5,639	5,649
640	5,649	5,660	5,670	5,680	5,691	5,701	5,712	5,722	5,732	5,743	5,753
650	5,753	5,763	5,774	5,784	5,794	5,805	5,815	5,826	5,836	5,846	5,857
660	5,857	5,867	5,878	5,888	5,898	5,909	5,919	5,930	5,940	5,950	5,961
670	5,961	5,971	5,982	5,992	6,003	6,013	6,024	6,034	6,044	6,055	6,065
680	6,065	6,076	6,086	6,097	6,107	6,118	6,128	6,139	6,149	6,160	6,170
690	6,170	6,181	6,191	6,202	6,212	6,223	6,233	6,244	6,254	6,265	6,275
700	6,275	6,286	6,296	6,307	6,317	6,328	6,338	6,349	6,360	6,370	6,381
710	6,381	6,391	6,402	6,412	6,423	6,434	6,444	6,455	6,465	6,476	6,486
720	6,486	6,497	6,508	6,518	6,529	6,539	6,550	6,561	6,571	6,582	6,593
730	6,593	6,603	6,614	6,624	6,635	6,646	6,656	6,667	6,678	6,688	6,699
740	6,699	6,710	6,720	6,731	6,742	6,752	6,763	6,774	6,784	6,795	6,806
750	6,806	6,817	6,827	6,838	6,849	6,859	6,870	6,881	6,892	6,902	6,913
760	6,913	6,924	6,934	6,945	6,956	6,967	6,977	6,988	6,999	7,010	7,020
770	7,020	7,031	7,042	7,053	7,064	7,074	7,085	7,096	7,107	7,117	7,128
780	7,128	7,139	7,150	7,161	7,172	7,182	7,193	7,204	7,215	7,226	7,236
790	7,236	7,247	7,258	7,269	7,280	7,291	7,302	7,312	7,323	7,334	7,345
800	7,345	7,356	7,367	7,378	7,388	7,399	7,410	7,421	7,432	7,443	7,454
810	7,454	7,465	7,476	7,487	7,497	7,508	7,519	7,530	7,541	7,552	7,563
820	7,563	7,574	7,585	7,596	7,607	7,618	7,629	7,640	7,651	7,662	7,673
830	7,673	7,684	7,695	7,706	7,717	7,728	7,739	7,750	7,761	7,772	7,783
840	7,783	7,794	7,805	7,816	7,827	7,838	7,849	7,860	7,871	7,882	7,893
850	7,893	7,904	7,915	7,926	7,937	7,948	7,959	7,970	7,981	7,992	8,003
860	8,003	8,014	8,026	8,037	8,048	8,059	8,070	8,081	8,092	8,103	8,114
870	8,114	8,125	8,137	8,148	8,159	8,170	8,181	8,192	8,203	8,214	8,226
880	8,226	8,237	8,248	8,259	8,270	8,281	8,293	8,304	8,315	8,326	8,337
890	8,337	8,348	8,360	8,371	8,382	8,393	8,404	8,416	8,427	8,438	8,449
900	8,449	8,460	8,472	8,483	8,494	8,505	8,517	8,528	8,539	8,550	8,562
910	8,562	8,573	8,584	8,595	8,607	8,618	8,629	8,640	8,652	8,663	8,674
920	8,674	8,685	8,697	8,708	8,719	8,731	8,742	8,753	8,765	8,776	8,787
930	8,787	8,798	8,810	8,821	8,832	8,844	8,855	8,866	8,878	8,889	8,900
940	8,900	8,912	8,923	8,935	8,946	8,957	8,969	8,980	8,991	9,003	9,014
950	9,014	9,025	9,037	9,048	9,060	9,071	9,082	9,094	9,105	9,117	9,128
960	9,128	9,139	9,151	9,162	9,174	9,185	9,197	9,208	9,219	9,231	9,242
970	9,242	9,254	9,265	9,277	9,288	9,300	9,311	9,323	9,334	9,345	9,357
980	9,357	9,368	9,380	9,391	9,403	9,414	9,426	9,437	9,449	9,460	9,472
990	9,472	9,483	9,495	9,506	9,518	9,529	9,541	9,552	9,564	9,576	9,587
1000	9,587	9,599	9,610	9,622	9,633	9,645	9,656	9,668	9,680	9,691	9,703
°C	0	1	2	3	4	5	6	7	8	9	10

ς

RANGEDITEMPERATURA (-50 +1768°C)

COLORAZIONE CAVO NORME ANSI

Risposta termica termocoppia tipo S(Platino Vs. Platino 10%Rodio). Temperatura[°C] vs. F.e.m. [mV] secondo IEC 584-1-ITS-90 giunto di riferimento 0 °C


°C	0	1	2	3	4	5	6	7	8	9	10
1000	9,587	9,599	9,610	9,622	9,633	9,645	9,656	9,668	9,680	9,691	9,703
1010	9,703	9,714	9,726	9,737	9,749	9,761	9,772	9,784	9,795	9,807	9,819
1020	9,819	9,830	9,842	9,853	9,865	9,877	9,888	9,900	9,911	9,923	9,935
1030	9,935	9,946	9,958	9,970	9,981	9,993	10,005	10,016	10,028	10,040	10,051
1040	10,051	10,063	10,075	10,086	10,098	10,109	10,121	10,133	10,145	10,156	10,168
1050	10,168	10,180	10,191	10,203	10,215	10,227	10,238	10,250	10,262	10,273	10,285
1060	10,285	10,297	10,309	10,320	10,332	10,344	10,356	10,367	10,379	10,391	10,403
1070	10,403	10,414	10,426	10,438	10,450	10,461	10,473	10,485	10,497	10,509	10,520
1080	10,520	10,532	10,544	10,556	10,567	10,579	10,591	10,603	10,615	10,626	10,638
1090	10,638	10,650	10,662	10,674	10,686	10,697	10,709	10,721	10,733	10,745	10,757
1100	10,757	10,768	10,780	10,792	10,804	10,816	10,828	10,839	10,851	10,863	10,875
1110	10,875	10,887	10,899	10,911	10,922	10,934	10,946	10,958	10,970	10,982	10,994
1120	10,994	11,006	11,017	11,029	11,041	11,053	11,065	11,077	11,089	11,101	11,113
1130	11,113	11,125	11,136	11,148	11,160	11,172	11,184	11,196	11,208	11,220	11,232
1140	11,232	11,244	11,256	11,268	11,280	11,291	11,303	11,315	11,327	11,339	11,351
1150	11,351	11,363	11,375	11,387	11,399	11,411	11,423	11,435	11,447	11,459	11,471
1160	11,471	11,483	11,495	11,507	11,519	11,531	11,542	11,554	11,566	11,578	11,590
1170	11,590	11,602	11,614	11,626	11,638	11,650	11,662	11,674	11,686	11,698	11,710
1180	11,710	11,722	11,734	11,746	11,758	11,770	11,782	11,794	11,806	11,818	11,830
1190	11,830	11,842	11,854	11,866	11,878	11,890	11,902	11,914	11,926	11,939	11,951
1200	11,951	11,963	11,975	11,987	11,999	12,011	12,023	12,035	12,047	12,059	12,071
1210	12,071	12,083	12,095	12,107	12,119	12,131	12,143	12,155	12,167	12,179	12,191
1220	12,191	12,203	12,216	12,228	12,240	12,252	12,264	12,276	12,288	12,300	12,312
1230	12,312	12,324	12,336	12,348	12,360	12,372	12,384	12,397	12,409	12,421	12,433
1240	12,433	12,445	12,457	12,469	12,481	12,493	12,505	12,517	12,529	12,542	12,554
1250	12,554	12,566	12,578	12,590	12,602	12,614	12,626	12,638	12,650	12,662	12,675
1260	12,675	12,687	12,699	12,711	12,723	12,735	12,747	12,759	12,771	12,783	12,796
1270	12,796	12,808	12,820	12,832	12,844	12,856	12,868	12,880	12,892	12,905	12,917
1280	12,917	12,929	12,941	12,953	12,965	12,977	12,989	13,001	13,014	13,026	13,038
1290	13,038	13,050	13,062	13,074	13,086	13,098	13,111	13,123	13,135	13,147	13,159
1300	13,159	13,171	13,183	13,195	13,208	13,220	13,232	13,244	13,256	13,268	13,280
1310	13,280	13,292	13,305	13,317	13,329	13,341	13,353	13,365	13,377	13,390	13,402
1320	13,402	13,414	13,426	13,438	13,450	13,462	13,474	13,487	13,499	13,511	13,523
1330	13,523	13,535	13,547	13,559	13,572	13,584	13,596	13,608	13,620	13,632	13,644
1340	13,644	13,657	13,669	13,681	13,693	13,705	13,717	13,729	13,742	13,754	13,766
1350	13,766	13,778	13,790	13,802	13,814	13,826	13,839	13,851	13,863	13,875	13,887
1360	13,887	13,899	13,911	13,924	13,936	13,948	13,960	13,972	13,984	13,996	14,009
1370	14,009	14,021	14,033	14,045	14,057	14,069	14,081	14,094	14,106	14,118	14,130
1380	14,130	14,142	14,154	14,166	14,178	14,191	14,203	14,215	14,227	14,239	14,251
1390	14,251	14,263	14,276	14,288	14,300	14,312	14,324	14,336	14,348	14,360	14,373
1400	14,373	14,385	14,397	14,409	14,421	14,433	14,445	14,457	14,470	14,482	14,494
1410	14,494	14,506	14,518	14,530	14,542	14,554	14,567	14,579	14,591	14,603	14,615
1420	14,615	14,627	14,639	14,651	14,664	14,676	14,688	14,700	14,712	14,724	14,736
1430	14,736	14,748	14,760	14,773	14,785	14,797	14,809	14,821	14,833	14,845	14,857
1440	14,857	14,869	14,881	14,894	14,906	14,918	14,930	14,942	14,954	14,966	14,978
1450	14,978	14,990	15,002	15,015	15,027	15,039	15,051	15,063	15,075	15,087	15,099
1460	15,099	15,111	15,123	15,135	15,148	15,160	15,172	15,184	15,196	15,208	15,220
1470	15,220	15,232	15,244	15,256	15,268	15,280	15,292	15,304	15,317	15,329	15,341
1480	15,341	15,353	15,365	15,377	15,389	15,401	15,413	15,425	15,437	15,449	15,461
1490	15,461	15,473	15,485	15,497	15,509	15,521	15,534	15,546	15,558	15,570	15,582
1500	15,582	15,594	15,606	15,618	15,630	15,642	15,654	15,666	15,678	15,690	15,702
1510	15,702	15,714	15,726	15,738	15,750	15,762	15,774	15,786	15,798	15,810	15,822
1520	15,822	15,834	15,846	15,858	15,870	15,882	15,894	15,906	15,918	15,930	15,942
1530	15,942	15,954	15,966	15,978	15,990	16,002	16,014	16,026	16,038	16,050	16,062
1540	16,062	16,074	16,086	16,098	16,110	16,122	16,134	16,146	16,158	16,170	16,182
1550	16,182	16,194	16,205	16,217	16,229	16,241	16,253	16,265	16,277	16,289	16,301
°C	0	1	2	3	4	5	6	7	8	9	10

S

RANGE DITEMPERATURA (-50 +1768°C)

COLORAZIONE CAVO NORME ANSI

Risposta termica termocoppia tipo S(Platino Vs. Platino 10%Rodio). Temperatura[°C] vs. F.e.m. [mV] secondo IEC 584-1-ITS-90 giunto di riferimento 0 °C

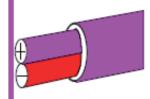
°C	0	1	2	3	4	5	6	7	8	9	10
1550	16,182	16,194	16,205	16,217	16,229	16,241	16,253	16,265	16,277	16,289	16,301
1560	16,301	16,313	16,325	16,337	16,349	16,361	16,373	16,385	16,396	16,408	16,420
1570	16,420	16,432	16,444	16,456	16,468	16,480	16,492	16,504	16,516	16,527	16,539
1580	16,539	16,551	16,563	16,575	16,587	16,599	16,611	16,623	16,634	16,646	16,658
1590	16,658	16,670	16,682	16,694	16,706	16,718	16,729	16,741	16,753	16,765	16,777
1600	16,777	16,789	16,801	16,812	16,824	16,836	16,848	16,860	16,872	16,883	16,895
1610	16,895	16,907	16,919	16,931	16,943	16,954	16,966	16,978	16,990	17,002	17,013
1620	17,013	17,025	17,037	17,049	17,061	17,072	17,084	17,096	17,108	17,120	17,131
1630	17,131	17,143	17,155	17,167	17,178	17,190	17,202	17,214	17,225	17,237	17,249
1640	17,249	17,261	17,272	17,284	17,296	17,308	17,319	17,331	17,343	17,355	17,366
1650	17,366	17,378	17,390	17,401	17,413	17,425	17,437	17,448	17,460	17,472	17,483
1660	17,483	17,495	17,507	17,518	17,530	17,542	17,553	17,565	17,577	17,588	17,600
1670	17,600	17,612	17,623	17,635	17,647	17,658	17,670	17,682	17,693	17,705	17,717
1680	17,717	17,728	17,740	17,751	17,763	17,775	17,786	17,798	17,809	17,821	17,832
1690	17,832	17,844	17,855	17,867	17,878	17,890	17,901	17,913	17,924	17,936	17,947
1700	17,947	17,959	17,970	17,982	17,993	18,004	18,016	18,027	18,039	18,050	18,061
1710	18,061	18,073	18,084	18,095	18,107	18,118	18,129	18,140	18,152	18,163	18,174
1720	18,174	18,185	18,196	18,208	18,219	18,230	18,241	18,252	18,263	18,274	18,285
1730	18,285	18,297	18,308	18,319	18,330	18,341	18,352	18,362	18,373	18,384	18,395
1740	18,395	18,406	18,417	18,428	18,439	18,449	18,460	18,471	18,482	18,493	18,503
1750	18,503	18,514	18,525	18,535	18,546	18,557	18,567	18,578	18,588	18,599	18,609
1760	18,609	18,620	18,630	18,641	18,651	18,661	18,672	18,682	18,693		
°C	0	1	2	3	4	5	6	7	8	9	10

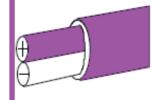
S

RANGE DITEMPERATURA (-50 +1768°C)

COLORAZIONE CAVO NORME ANSI

Risposta termica termocoppia tipo E(Nichel/Cromo Vs.Rame/Nichel). Temperatura[°C] vs. F.e.m. [mV] secondo IEC 584-1 - ITS-90 giunto di riferimento 0 °C

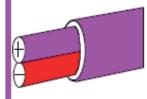

°C	0	-1	-2	-3	-4	-5	-6	-7	-8	-9	-10
-270	-9,835										
-260	-9,797	-9,802	-9,808	-9,813	-9,817	-9,821	-9,825	-9,828	-9,831	-9,833	-9,835
-250	-9,718	-9,728	-9,737	-9,746	-9,754	-9,762	-9,770	-9,777	-9,784	-9,790	-9,797
-240	-9,604	-9,617	-9,630	-9,642	-9,654	-9,666	-9,677	-9,688	-9,698	-9,709	-9,718
-230	-9,455	-9,471	-9,487	-9,503	-9,519	-9,534	-9,548	-9,563	-9,577	-9,591	-9,604
-220	-9,274	-9,293	-9,313	-9,331	-9,350	-9,368	-9,386	-9,404	-9,421	-9,438	-9,455
-210	-9,063	-9,085	-9,107	-9,129	-9,151	-9,172	-9,193	-9,214	-9,234	-9,254	-9,274
-200	-8,825	-8,850	-8,874	-8,899	-8,923	-8,947	-8,971	-8,994	-9,017	-9,040	-9,063
-190	-8,561	-8,588	-8,616	-8,643	-8,669	-8,696	-8,722	-8,748	-8,774	-8,799	-8,825
-180	-8,273	-8,303	-8,333	-8,362	-8,391	-8,420	-8,449	-8,477	-8,505	-8,533	-8,561
-170	-7,963	-7,995	-8,027	-8,059	-8,090	-8,121	-8,152	-8,183	-8,213	-8,243	-8,273
-160	-7,632	-7,666	-7,700	-7,733	-7,767	-7,800	-7,833	-7,866	-7,899	-7,931	-7,963
-150	-7,279	-7,315	-7,351	-7,387	-7,423	-7,458	-7,493	-7,528	-7,563	-7,597	-7,632
-140	-6,907	-6,945	-6,983	-7,021	-7,058	-7,096	-7,133	-7,170	-7,206	-7,243	-7,279
-130	-6,516	-6,556	-6,596	-6,636	-6,675	-6,714	-6,753	-6,792	-6,831	-6,869	-6,907
-120	-6,107	-6,149	-6,191	-6,232	-6,273	-6,314	-6,355	-6,396	-6,436	-6,476	-6,516
-110	-5,681	-5,724	-5,767	-5,810	-5,853	-5,896	-5,939	-5,981	-6,023	-6,065	-6,107
-100	-5,237	-5,282	-5,327	-5,372	-5,417	-5,461	-5,505	-5,549	-5,593	-5,637	-5,681
-90	-4,777	-4,824	-4,871	-4,917	-4,963	-5,009	-5,055	-5,101	-5,147	-5,192	-5,237
-80	-4,302	-4,350	-4,398	-4,446	-4,494	-4,542	-4,589	-4,636	-4,684	-4,731	-4,777
-70	-3,811	-3,861	-3,911	-3,960	-4,009	-4,058	-4,107	-4,156	-4,205	-4,254	-4,302
-60	-3,306	-3,357	-3,408	-3,459	-3,510	-3,561	-3,611	-3,661	-3,711	-3,761	-3,811
-50	-2,787	-2,840	-2,892	-2,944	-2,996	-3,048	-3,100	-3,152	-3,204	-3,255	-3,306
-40	-2,255	-2,309	-2,362	-2,416	-2,469	-2,523	-2,576	-2,629	-2,682	-2,735	-2,787
-30	-1,709	-1,765	-1,820	-1,874	-1,929	-1,984	-2,038	-2,093	-2,147	-2,201	-2,255
-20	-1,152	-1,208	-1,264	-1,320	-1,376	-1,432	-1,488	-1,543	-1,599	-1,654	-1,709
-10	-0,582	-0,639	-0,697	-0,754	-0,811	-0,868	-0,925	-0,982	-1,039	-1,095	-1,152
0	0,000	-0,059	-0,117	-0,176	-0,234	-0,292	-0,350	-0,408	-0,466	-0,524	-0,582
°C	0	-1	-2	-3	-4	-5	-6	-7	-8	-9	-10

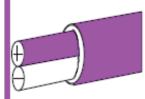

°C	0	1	2	3	4	5	6	7	8	9	10
0	0,000	0,059	0,118	0,176	0,235	0,294	0,354	0,413	0,472	0,532	0,591
10	0,591	0,651	0,711	0,770	0,830	0,890	0,950	1,010	1,071	1,131	1,192
20	1,192	1,252	1,313	1,373	1,434	1,495	1,556	1,617	1,678	1,740	1,801
30	1,801	1,862	1,924	1,986	2,047	2,109	2,171	2,233	2,295	2,357	2,420
40	2,420	2,482	2,545	2,607	2,670	2,733	2,795	2,858	2,921	2,984	3,048
50	3,048	3,111	3,174	3,238	3,301	3,365	3,429	3,492	3,556	3,620	3,685
60	3,685	3,749	3,813	3,877	3,942	4,006	4,071	4,136	4,200	4,265	4,330
70	4,330	4,395	4,460	4,526	4,591	4,656	4,722	4,788	4,853	4,919	4,985
80	4,985	5,051	5,117	5,183	5,249	5,315	5,382	5,448	5,514	5,581	5,648
90	5,648	5,714	5,781	5,848	5,915	5,982	6,049	6,117	6,184	6,251	6,319
100	6,319	6,386	6,454	6,522	6,590	6,658	6,725	6,794	6,862	6,930	6,998
110	6,998	7,066	7,135	7,203	7,272	7,341	7,409	7,478	7,547	7,616	7,685
120	7,685	7,754	7,823	7,892	7,962	8,031	8,101	8,170	8,240	8,309	8,379
130	8,379	8,449	8,519	8,589	8,659	8,729	8,799	8,869	8,940	9,010	9,081
140	9,081	9,151	9,222	9,292	9,363	9,434	9,505	9,576	9,647	9,718	9,789
150	9,789	9,860	9,931	10,003	10,074	10,145	10,217	10,288	10,360	10,432	10,503
160	10,503	10,575	10,647	10,719	10,791	10,863	10,935	11,007	11,080	11,152	11,224
170	11,224	11,297	11,369	11,442	11,514	11,587	11,660	11,733	11,805	11,878	11,951
180	11,951	12,024	12,097	12,170	12,243	12,317	12,390	12,463	12,537	12,610	12,684
190	12,684	12,757	12,831	12,904	12,978	13,052	13,126	13,199	13,273	13,347	13,421
200	13,421	13,495	13,569	13,644	13,718	13,792	13,866	13,941	14,015	14,090	14,164
210	14,164	14,239	14,313	14,388	14,463	14,537	14,612	14,687	14,762	14,837	14,912
220	14,912	14,987	15,062	15,137	15,212	15,287	15,362	15,438	15,513	15,588	15,664
230	15,664	15,739	15,815	15,890	15,966	16,041	16,117	16,193	16,269	16,344	16,420
240	16,420	16,496	16,572	16,648	16,724	16,800	16,876	16,952	17,028	17,104	17,181
250	17,181	17,257	17,333	17,409	17,486	17,562	17,639	17,715	17,792	17,868	17,945
°C	0	1	2	3	4	5	6	7	8	9	10

F

RANGE DI TEMPERATURA (-270 +1000 °C)

COLORAZIONE CAVO NORME ANSI

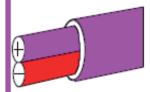

Risposta termica termocoppia tipo E(Nichel/Cromo Vs.Rame/Nichel). Temperatura[°C] vs. F.e.m. [mV] secondo IEC 584-1 - ITS-90 giunto di riferimento 0 °C


				200	-		4.00		000		1000
°C	0	1	2	3	4	5	6	7	8	9	10
250	17,181	17,257	17,333	17,409	17,486	17,562	17,639	17,715	17,792	17,868	17,945
260	17,945	18,021	18,098	18,175	18,252	18,328	18,405	18,482	18,559	18,636	18,713
270	18,713	18,790	18,867	18,944	19,021	19,098	19,175	19,252	19,330	19,407	19,484
280	19,484	19,561	19,639	19,716	19,794	19,871	19,948	20,026	20,103	20,181	20,259
290	20,259	20,336	20,414	20,492	20,569	20,647	20,725	20,803	20,880	20,958	21,036
300	21,036	21,114	21,192	21,270	21,348	21,426	21,504	21,582	21,660	21,739	21,817
310	21,817	21,895	21,973	22,051	22,130	22,208	22,286	22,365	22,443	22,522	22,600
320	22,600	22,678	22,757	22,835	22,914	22,993	23,071	23,150	23,228	23,307	23,386
330	23,386	23,464	23,543	23,622	23,701	23,780	23,858	23,937	24,016	24,095	24,174
340	24,174	24,253	24,332	24,411	24,490	24,569	24,648	24,727	24,806	24,885	24,964
350	24,964	25,044	25,123	25,202	25,281	25,360	25,440	25,519	25,598	25,678	25,757
360	25,757	25,836	25,916	25,995	26,075	26,154	26,233	26,313	26,392	26,472	26,552
370	26,552	26,631	26,711	26,790	26,870	26,950	27,029	27,109	27,189	27,268	27,348
380	27,348	27,428	27,507	27,587	27,667	27,747	27,827	27,907	27,986	28,066	28,146
390	28,146	28,226	28,306	28,386	28,466	28,546	28,626	28,706	28,786	28,866	28,946
400	28,946	29,026	29,106	29,186	29,266	29,346	29,427	29,507	29,587	29,667	29,747
410	29,747	29,827	29,908	29,988	30,068	30,148	30,229	30,309	30,389	30,470	30,550
420	30,550	30,630	30,711	30,791	30,871	30,952	31,032	31,112	31,193	31,273	31,354
430	31,354	31,434	31,515	31,595	31,676	31,756	31,837	31,917	31,998	32,078	32,159
440	32,159	32,239	32,320	32,400	32,481	32,562	32,642	32,723	32,803	32,884	32,965
450	32,965	33,045	33,126	33,207	33,287	33,368	33,449	33,529	33,610	33,691	33,772
460	33,772	33,852	33,933	34,014	34,095	34,175	34,256	34,337	34,418	34,498	34,579
470	34,579	34,660	34,741	34,822	34,902	34,983	35,064	35,145	35,226	35,307	35,387
480	35,387	35,468	35,549	35,630	35,711	35,792	35,873	35,954	36,034	36,115	36,196
490	36,196	36,277	36,358	36,439	36,520	36,601	36,682	36,763	36,843	36,924	37,005
500	37,005	37,086	37,167	37,248	37,329	37,410	37,491	37,572	37,653	37,734	37,815
510	37,815	37,896	37,977	38,058	38,139	38,220	38,300	38,381	38,462	38,543	38,624
520	38,624	38,705	38,786	38,867	38,948	39,029	39,110	39,191	39,272	39,353	39,434
530	39,434	39,515	39,596	39,677	39,758	39,839	39,920	40,001	40,082	40,163	40,243
540	40,243	40,324	40,405	40,486	40,567	40,648	40,729	40,810	40,891	40,972	41,053
550 560	41,053	41,134	41,215	41,296	41,377	41,457	41,538	41,619 42,428	41,700	41,781	41,862
570	41,862 42,671	41,943 42,751	42,024 42,832	42,105 42,913	42,185 42,994	42,266 43,075	42,347 43,156	43,236	42,509 43,317	42,590 43,398	42,671 43,479
580	43,479	43,560	43,640	43,721	43,802	43,883	43,963	44,044	44,125	44,206	44,286
590	44,286	44,367	44,448	44,529	44,609	44,690	44,771	44,851	44,932	45,013	45,093
600	45,093	45,174	45,255	45,335	45,416	45,497	45,577	45,658	45,738	45,819	45,900
610	45,900	45,980	46,061	46,141	46,222	46,302	46,383	46,463	46,544	46,624	46,705
620	46,705	46,785	46,866	46,946	47,027	47,107	47,188	47,268	47,349	47,429	47,509
630	47,509	47,590	47,670	47,751	47,831	47,911	47,992	48,072	48,152	48,233	48,313
640	48,313	48,393	48,474	48,554	48,634	48,715	48,795	48,875	48,955	49,035	49,116
650	49,116	49,196	49,276	49,356	49,436	49,517	49,597	49,677	49,757	49,837	49,917
660	49,917	49,997	50,077	50,157	50,238	50,318	50,398	50,478	50,558	50,638	50,718
670	50,718	50,798	50,878	50,958	51,038	51,118	51,197	51,277	51,357	51,437	51,517
680	51,517	51,597	51,677	51,757	51,837	51,916	51,996	52,076	52,156	52,236	52,315
690	52,315	52,395	52,475	52,555	52,634	52,714	52,794	52,873	52,953	53,033	53,112
700	53,112	53,192	53,272	53,351	53,431	53,510	53,590	53,670	53,749	53,829	53,908
710	53,908	53,988	54,067	54,147	54,226	54,306	54,385	54,465	54,544	54,624	54,703
720	54,703	54,782	54,862	54,941	55,021	55,100	55,179	55,259	55,338	55,417	55,497
730	55,497	55,576	55,655	55,734	55,814	55,893	55,972	56,051	56,131	56,210	56,289
740	56,289	56,368	56,447	56,526	56,606	56,685	56,764	56,843	56,922	57,001	57,080
750	57,080	57,159	57,238	57,317	57,396	57,475	57,554	57,633	57,712	57,791	57,870
760	57,870	57,949	58,028	58,107	58,186	58,265	58,343	58,422	58,501	58,580	58,659
770	58,659	58,738	58,816	58,895	58,974	59,053	59,131	59,210	59,289	59,367	59,446
780	59,446	59,525	59,604	59,682	59,761	59,839	59,918	59,997	60,075	60,154	60,232
790	60,232	60,311	60,390	60,468	60,547	60,625	60,704	60,782	60,860	60,939	61,017
800	61,017	61,096	61,174	61,253	61,331	61,409	61,488	61,566	61,644	61,723	61,801
°C	0	1	2	3	4	5	6	7	8	9	10

E

RANGE DI TEMPERATURA (-270 +1000 °C)

COLORAZIONE CAVO NORME ANSI


Risposta termica termocoppia tipo E(Nichel/Cromo Vs.Rame/Nichel). Temperatura[°C] vs. F.e.m. [mV] secondo IEC 584-1 - ITS-90 giunto di riferimento 0 °C

°C	0	1	2	3	4	5	6	7	8	9	10
800	61,017	61,096	61,174	61,253	61,331	61,409	61,488	61,566	61,644	61,723	61,801
810	61,801	61,879	61,958	62,036	62,114	62,192	62,271	62,349	62,427	62,505	62,583
820	62,583	62,662	62,740	62,818	62,896	62,974	63,052	63,130	63,208	63,286	63,364
830	63,364	63,442	63,520	63,598	63,676	63,754	63,832	63,910	63,988	64,066	64,144
840	64,144	64,222	64,300	64,377	64,455	64,533	64,611	64,689	64,766	64,844	64,922
850	64,922	65,000	65,077	65,155	65,233	65,310	65,388	65,465	65,543	65,621	65,698
860	65,698	65,776	65,853	65,931	66,008	66,086	66,163	66,241	66,318	66,396	66,473
870	66,473	66,550	66,628	66,705	66,782	66,860	66,937	67,014	67,092	67,169	67,246
880	67,246	67,323	67,400	67,478	67,555	67,632	67,709	67,786	67,863	67,940	68,017
890	68,017	68,094	68,171	68,248	68,325	68,402	68,479	68,556	68,633	68,710	68,787
900	68,787	68,863	68,940	69,017	69,094	69,171	69,247	69,324	69,401	69,477	69,554
910	69,554	69,631	69,707	69,784	69,860	69,937	70,013	70,090	70,166	70,243	70,319
920	70,319	70,396	70,472	70,548	70,625	70,701	70,777	70,854	70,930	71,006	71,082
930	71,082	71,159	71,235	71,311	71,387	71,463	71,539	71,615	71,692	71,768	71,844
940	71,844	71,920	71,996	72,072	72,147	72,223	72,299	72,375	72,451	72,527	72,603
950	72,603	72,678	72,754	72,830	72,906	72,981	73,057	73,133	73,208	73,284	73,360
960	73,360	73,435	73,511	73,586	73,662	73,738	73,813	73,889	73,964	74,040	74,115
970	74,115	74,190	74,266	74,341	74,417	74,492	74,567	74,643	74,718	74,793	74,869
980	74,869	74,944	75,019	75,095	75,170	75,245	75,320	75,395	75,471	75,546	75,621
990	75,621	75,696	75,771	75,847	75,922	75,997	76,072	76,147	76,223	76,298	76,373
1000	76,373										
°C	0	1	2	3	4	5	6	7	8	9	10

Ε

RANGE DI TEMPERATURA (-270 +1000 °C)

COLORAZIONE CAVO NORME ANSI

TERMORESISTENZA

PT100

Risposta termica termocoppia tipo E(Nichel/Cromo Vs.Rame/Nichel). Temperatura[$^{\circ}$ C] vs. F.e.m. [mV] secondo IEC 584-1 - ITS-90 giunto di riferimento 0 $^{\circ}$ C

°C	0	-1	-2	-3	-4	-5	-6	-7	-8	-9	-10
-200	18,493										
-190	22,803	22,374	21,944	21,514	21,083	20,653	20,221	19,790	19,358	18,926	18,493
-180	27,078	26,652	26,226	25,799	25,372	24,945	24,517	24,089	23,661	23,232	22,803
-170	31,320	30,897	30,474	30,051	29,627	29,203	28,779	28,354	27,929	27,504	27,078
-160	35,531	35,111	34,691	34,271	33,850	33,429	33,008	32,587	32,165	31,742	31,320
-150	39,714	39,297	38,879	38,462	38,044	37,626	37,208	36,789	36,370	35,951	35,531
-140	43,869	43,455	43,040	42,625	42,210	41,795	41,379	40,963	40,547	40,130	39,714
-130	47,999	47,587	47,175	46,763	46,350	45,937	45,524	45,111	44,697	44,283	43,869
-120	52,106	51,696	51,286	50,876	50,466	50,055	49,645	49,234	48,822	48,411	47,999
-110	56,190	55,783	55,375	54,967	54,559	54,151	53,742	53,333	52,924	52,515	52,106
-100	60,254	59,849 63,895	59,443	59,037	58,631	58,225	57,818	57,412	57,005	56,598	56,190
-90 -80	64,299		63,491	63,087	62,683	62,279 cc 214	61,874	61,469	61,065	60,659	60,254
	68,325	67,923	67,521	67,119	66,717	66,314	65,911	65,508	65,105	64,702	64,299
-70 -60	72,335	71,934	71,534	71,134	70,733 74,733	70,332	69,931	69,530	69,128	68,727	68,325
	76,328	75,930	75,531	75,132		74,333	73,934	73,534	73,135	72,735	72,335
-50 -40	80,307 84,271	79,910	79,512 83,479	79,115	78,717	78,319 82,291	77,921	77,523 81,498	77,125 81,101	76,727 80,704	76,328
	88,222	83,875		83,083	82,687		81,894 85,853	85,458		-	80,307
-30		87,828	87,433	87,038	86,643	86,248	89,799	89,405	85,063 89,011	84,667	84,271
-20 -10	92,160 96,086	91,767 95,694	91,374 95,302	90,980	90,587 94,517	90,193 94,125	93,732	93,339	92,946	88,617 92,553	92,160
0	100,000	99,609	99,218	98,827	98,436	98,045	97,653	97,262	96,870	96,478	96,086
°C	0	-1	-2	-3	-4	-5	-6	-7	-8	-9	-10
		-1	-2	-3	-4	-5	-0	-1	-0	-9	-10
°C	0	1	2	3	4	5	6	7	8	9	10
0	100,000	100,391	100,781	101,172	101,562	101,953	102,343	102,733	103,123	103,513	103,902
10	103,902	104,292	104,681	105,071	105,460	105,849	106,238	106,627	107,016	107,404	107,793
20	407 702			***	400.040						444.070
20	107,793	108,181	108,570	108,958	109,346	109,734	110,122	110,509	110,897	111,284	111,672
30		108,181		112,833				110,509			111,672
		112,059			113,220		113,994	114,380	114,767		115,539
30	111,672	112,059 115,925	112,446	112,833	113,220	113,607	113,994 117,854	114,380	114,767	115,153	115,539 119,395
30 40	111,672 115,539	112,059 115,925 119,780	112,446 116,311	112,833 116,697	113,220 117,083 120,934	113,607 117,469	113,994 117,854 121,703	114,380 118,240	114,767 118,625 122,471	115,153 119,010	115,539 119,395 123,239
30 40 50	111,672 115,539 119,395	112,059 115,925 119,780 123,623	112,446 116,311 120,165	112,833 116,697 120,550	113,220 117,083 120,934	113,607 117,469 121,319	113,994 117,854 121,703	114,380 118,240 122,087	114,767 118,625 122,471 126,306	115,153 119,010 122,855	115,539 119,395 123,239
30 40 50 60	111,672 115,539 119,395 123,239	112,059 115,925 119,780 123,623 127,454	112,446 116,311 120,165 124,007	112,833 116,697 120,550 124,390	113,220 117,083 120,934 124,774 128,602	113,607 117,469 121,319 125,157	113,994 117,854 121,703 125,540	114,380 118,240 122,087 125,923	114,767 118,625 122,471 126,306	115,153 119,010 122,855 126,689	115,539 119,395 123,239 127,072 130,893
30 40 50 60 70	111,672 115,539 119,395 123,239 127,072	112,059 115,925 119,780 123,623 127,454 131,274	112,446 116,311 120,165 124,007 127,837 131,656	112,833 116,697 120,550 124,390 128,219	113,220 117,083 120,934 124,774 128,602 132,418	113,607 117,469 121,319 125,157 128,984	113,994 117,854 121,703 125,540 129,366 133,180	114,380 118,240 122,087 125,923 129,748	114,767 118,625 122,471 126,306 130,130 133,941	115,153 119,010 122,855 126,689 130,511	115,539 119,395 123,239 127,072 130,893 134,702
30 40 50 60 70 80	111,672 115,539 119,395 123,239 127,072 130,893	112,059 115,925 119,780 123,623 127,454 131,274 135,083	112,446 116,311 120,165 124,007 127,837 131,656	112,833 116,697 120,550 124,390 128,219 132,037 135,843	113,220 117,083 120,934 124,774 128,602 132,418 136,223	113,607 117,469 121,319 125,157 128,984 132,799	113,994 117,854 121,703 125,540 129,366 133,180 136,982	114,380 118,240 122,087 125,923 129,748 133,561	114,767 118,625 122,471 126,306 130,130 133,941 137,741	115,153 119,010 122,855 126,689 130,511 134,322	115,539 119,395 123,239 127,072 130,893 134,702 138,500
30 40 50 60 70 80	111,672 115,539 119,395 123,239 127,072 130,893 134,702	112,059 115,925 119,780 123,623 127,454 131,274 135,083 138,879	112,446 116,311 120,165 124,007 127,837 131,656 135,463	112,833 116,697 120,550 124,390 128,219 132,037 135,843	113,220 117,083 120,934 124,774 128,602 132,418 136,223	113,607 117,469 121,319 125,157 128,984 132,799 136,603	113,994 117,854 121,703 125,540 129,366 133,180 136,982 140,773	114,380 118,240 122,087 125,923 129,748 133,561 137,362 141,152	114,767 118,625 122,471 126,306 130,130 133,941 137,741 141,530	115,153 119,010 122,855 126,689 130,511 134,322 138,121	115,539 119,395 123,239 127,072 130,893 134,702 138,500
30 40 50 60 70 80 90 100 110 120	111,672 115,539 119,395 123,239 127,072 130,893 134,702 138,500 142,286 146,061	112,059 115,925 119,780 123,623 127,454 131,274 135,083 138,879 142,664 146,438	112,446 116,311 120,165 124,007 127,837 131,656 135,463 139,258 143,042 146,814	112,833 116,697 120,550 124,390 128,219 132,037 135,843 139,637 143,420 147,191	113,220 117,083 120,934 124,774 128,602 132,418 136,223 140,016 143,797 147,567	113,607 117,469 121,319 125,157 128,984 132,799 136,603 140,395 144,175 147,944	113,994 117,854 121,703 125,540 129,366 133,180 136,982 140,773 144,552 148,320	114,380 118,240 122,087 125,923 129,748 133,561 137,362 141,152 144,930 148,696	114,767 118,625 122,471 126,306 130,130 133,941 137,741 141,530 145,307 149,072	115,153 119,010 122,855 126,689 130,511 134,322 138,121 141,908 145,684 149,448	115,539 119,395 123,239 127,072 130,893 134,702 138,500 142,286 146,061 149,824
30 40 50 60 70 80 90 100	111,672 115,539 119,395 123,239 127,072 130,893 134,702 138,500 142,286 146,061	112,059 115,925 119,780 123,623 127,454 131,274 135,083 138,879 142,664 146,438	112,446 116,311 120,165 124,007 127,837 131,656 135,463 139,258 143,042	112,833 116,697 120,550 124,390 128,219 132,037 135,843 139,637 143,420 147,191	113,220 117,083 120,934 124,774 128,602 132,418 136,223 140,016 143,797 147,567	113,607 117,469 121,319 125,157 128,984 132,799 136,603 140,395 144,175 147,944	113,994 117,854 121,703 125,540 129,366 133,180 136,982 140,773 144,552 148,320	114,380 118,240 122,087 125,923 129,748 133,561 137,362 141,152 144,930 148,696	114,767 118,625 122,471 126,306 130,130 133,941 137,741 141,530 145,307 149,072	115,153 119,010 122,855 126,689 130,511 134,322 138,121 141,908 145,684 149,448	115,539 119,395 123,239 127,072 130,893 134,702 138,500 142,286 146,061 149,824
30 40 50 60 70 80 90 100 110 120 130	111,672 115,539 119,395 123,239 127,072 130,893 134,702 138,500 142,286 146,061 149,824 153,575	112,059 115,925 119,780 123,623 127,454 131,274 135,083 138,879 142,664 146,438 150,199 153,950	112,446 116,311 120,165 124,007 127,837 131,656 135,463 139,258 143,042 146,814 150,575 154,324	112,833 116,697 120,550 124,390 128,219 132,037 135,843 139,637 143,420 147,191 150,950 154,698	113,220 117,083 120,934 124,774 128,602 132,418 136,223 140,016 143,797 147,567 151,326 155,072	113,607 117,469 121,319 125,157 128,984 132,799 136,603 140,395 144,175 147,944 151,701 155,446	113,994 117,854 121,703 125,540 129,366 133,180 136,982 140,773 144,552 148,320 152,076	114,380 118,240 122,087 125,923 129,748 133,561 137,362 141,152 144,930 148,696 152,451 156,194	114,767 118,625 122,471 126,306 130,130 133,941 137,741 141,530 145,307 149,072 152,826 156,568	115,153 119,010 122,855 126,689 130,511 134,322 138,121 141,908 145,684 149,448 153,200 156,941	115,539 119,395 123,239 127,072 130,893 134,702 138,500 142,286 146,061 149,824 153,575 157,315
30 40 50 60 70 80 90 100 110 120 130	111,672 115,539 119,395 123,239 127,072 130,893 134,702 138,500 142,286 146,061 149,824 153,575	112,059 115,925 119,780 123,623 127,454 131,274 135,083 138,879 142,664 146,438 150,199 153,950	112,446 116,311 120,165 124,007 127,837 131,656 135,463 139,258 143,042 146,814 150,575	112,833 116,697 120,550 124,390 128,219 132,037 135,843 139,637 143,420 147,191 150,950 154,698	113,220 117,083 120,934 124,774 128,602 132,418 136,223 140,016 143,797 147,567 151,326 155,072	113,607 117,469 121,319 125,157 128,984 132,799 136,603 140,395 144,175 147,944 151,701 155,446	113,994 117,854 121,703 125,540 129,366 133,180 136,982 140,773 144,552 148,320 152,076	114,380 118,240 122,087 125,923 129,748 133,561 137,362 141,152 144,930 148,696 152,451 156,194	114,767 118,625 122,471 126,306 130,130 133,941 137,741 141,530 145,307 149,072 152,826 156,568	115,153 119,010 122,855 126,689 130,511 134,322 138,121 141,908 145,684 149,448 153,200 156,941	115,539 119,395 123,239 127,072 130,893 134,702 138,500 142,286 146,061 149,824 153,575 157,315
30 40 50 60 70 80 90 100 110 120 130	111,672 115,539 119,395 123,239 127,072 130,893 134,702 138,500 142,286 146,061 149,824 153,575 157,315	112,059 115,925 119,780 123,623 127,454 131,274 135,083 138,879 142,664 146,438 150,199 153,950 157,688	112,446 116,311 120,165 124,007 127,837 131,656 135,463 139,258 143,042 146,814 150,575 154,324 158,061 161,787	112,833 116,697 120,550 124,390 128,219 132,037 135,843 139,637 143,420 147,191 150,950 154,698 158,435 162,159	113,220 117,083 120,934 124,774 128,602 132,418 136,223 140,016 143,797 147,567 151,326 155,072 158,808 162,531	113,607 117,469 121,319 125,157 128,984 132,799 136,603 140,395 144,175 147,944 151,701 155,446 159,180 162,903	113,994 117,854 121,703 125,540 129,366 133,180 136,982 140,773 144,552 148,320 152,076 155,820 159,553 163,274	114,380 118,240 122,087 125,923 129,748 133,561 137,362 141,152 144,930 148,696 152,451 156,194 159,926 163,646	114,767 118,625 122,471 126,306 130,130 133,941 137,741 141,530 145,307 149,072 152,826 156,568 160,298 164,017	115,153 119,010 122,855 126,689 130,511 134,322 138,121 141,908 145,684 149,448 153,200 156,941 160,671 164,388	115,539 119,395 123,239 127,072 130,893 134,702 138,500 142,286 146,061 149,824 153,575 157,315 161,043 164,760
30 40 50 60 70 80 90 100 110 120 130 140	111,672 115,539 119,395 123,239 127,072 130,893 134,702 138,500 142,286 146,061 149,824 153,575 157,315 161,043	112,059 115,925 119,780 123,623 127,454 131,274 135,083 138,879 142,664 146,438 150,199 153,950 157,688	112,446 116,311 120,165 124,007 127,837 131,656 135,463 139,258 143,042 146,814 150,575 154,324 158,061 161,787	112,833 116,697 120,550 124,390 128,219 132,037 135,843 139,637 143,420 147,191 150,950 154,698 158,435	113,220 117,083 120,934 124,774 128,602 132,418 136,223 140,016 143,797 147,567 151,326 155,072 158,808 162,531	113,607 117,469 121,319 125,157 128,984 132,799 136,603 140,395 144,175 147,944 151,701 155,446 159,180 162,903	113,994 117,854 121,703 125,540 129,366 133,180 136,982 140,773 144,552 148,320 152,076 155,820 159,553 163,274	114,380 118,240 122,087 125,923 129,748 133,561 137,362 141,152 144,930 148,696 152,451 156,194 159,926 163,646 167,354	114,767 118,625 122,471 126,306 130,130 133,941 137,741 141,530 145,307 149,072 152,826 156,568 160,298 164,017 167,724	115,153 119,010 122,855 126,689 130,511 134,322 138,121 141,908 145,684 149,448 153,200 156,941 160,671 164,388 168,095	115,539 119,395 123,239 127,072 130,893 134,702 138,500 142,286 146,061 149,824 153,575 157,315 161,043 164,760 168,465
30 40 50 60 70 80 90 100 110 120 130 140 150	111,672 115,539 119,395 123,239 127,072 130,893 134,702 138,500 142,286 146,061 149,824 153,575 157,315 161,043	112,059 115,925 119,780 123,623 127,454 131,274 135,083 138,879 142,664 146,438 150,199 153,950 157,688 161,415 165,131	112,446 116,311 120,165 124,007 127,837 131,656 135,463 139,258 143,042 146,814 150,575 154,324 158,061 161,787 165,501	112,833 116,697 120,550 124,390 128,219 132,037 135,843 139,637 143,420 147,191 150,950 154,698 158,435 162,159	113,220 117,083 120,934 124,774 128,602 132,418 136,223 140,016 143,797 147,567 151,326 155,072 158,808 162,531 166,243	113,607 117,469 121,319 125,157 128,984 132,799 136,603 140,395 144,175 147,944 151,701 155,446 159,180 162,903 166,613	113,994 117,854 121,703 125,540 129,366 133,180 136,982 140,773 144,552 148,320 152,076 155,820 159,553 163,274 166,984	114,380 118,240 122,087 125,923 129,748 133,561 137,362 141,152 144,930 148,696 152,451 156,194 159,926 163,646 167,354	114,767 118,625 122,471 126,306 130,130 133,941 137,741 141,530 145,307 149,072 152,826 156,568 160,298 164,017	115,153 119,010 122,855 126,689 130,511 134,322 138,121 141,908 145,684 149,448 153,200 156,941 160,671 164,388 168,095	115,539 119,395 123,239 127,072 130,893 134,702 138,500 142,286 146,061 149,824 153,575 157,315 161,043 164,760 168,465
30 40 50 60 70 80 90 100 110 120 130 140 150 160 170	111,672 115,539 119,395 123,239 127,072 130,893 134,702 138,500 142,286 146,061 149,824 153,575 157,315 161,043 164,760 168,465	112,059 115,925 119,780 123,623 127,454 131,274 135,083 138,879 142,664 146,438 150,199 153,950 157,688 161,415 165,131 168,834	112,446 116,311 120,165 124,007 127,837 131,656 135,463 139,258 143,042 146,814 150,575 154,324 158,061 161,787 165,501	112,833 116,697 120,550 124,390 128,219 132,037 135,843 139,637 143,420 147,191 150,950 154,698 158,435 162,159 165,872 169,574	113,220 117,083 120,934 124,774 128,602 132,418 136,223 140,016 143,797 147,567 151,326 155,072 158,808 162,531 166,243 169,943	113,607 117,469 121,319 125,157 128,984 132,799 136,603 140,395 144,175 147,944 151,701 155,446 159,180 162,903 166,613 170,313	113,994 117,854 121,703 125,540 129,366 133,180 136,982 140,773 144,552 148,320 152,076 155,820 159,553 163,274 166,984 170,682	114,380 118,240 122,087 125,923 129,748 133,561 137,362 141,152 144,930 148,696 152,451 156,194 159,926 163,646 167,354 171,051	114,767 118,625 122,471 126,306 130,130 133,941 137,741 141,530 145,307 149,072 152,826 156,568 160,298 164,017 167,724 171,420	115,153 119,010 122,855 126,689 130,511 134,322 138,121 141,908 145,684 149,448 153,200 156,941 160,671 164,388 168,095 171,789	115,539 119,395 123,239 127,072 130,893 134,702 138,500 142,286 146,061 149,824 153,575 157,315 161,043 164,760 168,465 172,158
30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180 190 200	111,672 115,539 119,395 123,239 127,072 130,893 134,702 138,500 142,286 146,061 149,824 153,575 157,315 161,043 164,760 168,465 172,158	112,059 115,925 119,780 123,623 127,454 131,274 135,083 138,879 142,664 146,438 150,199 153,950 157,688 161,415 165,131 168,834 172,527 176,207	112,446 116,311 120,165 124,007 127,837 131,656 135,463 139,258 143,042 146,814 150,575 154,324 158,061 161,787 165,501 169,204 172,895 176,575	112,833 116,697 124,390 124,390 128,219 132,037 135,843 139,637 143,420 147,191 150,950 154,698 158,435 162,159 165,872 169,574 173,264 176,942	113,220 117,083 120,934 124,774 128,602 132,418 136,223 140,016 143,797 147,567 151,326 155,072 158,808 162,531 166,243 169,943 173,632 177,309	113,607 117,469 121,319 125,157 128,984 132,799 136,603 140,395 144,175 147,944 151,701 155,446 159,180 162,903 166,613 170,313 174,000 177,676	113,994 117,854 121,703 125,540 129,366 133,180 136,982 140,773 144,552 148,320 152,076 155,820 159,553 163,274 166,984 170,682 174,368 178,043	114,380 118,240 122,087 125,923 129,748 133,561 137,362 141,152 144,930 148,696 152,451 156,194 159,926 163,646 167,354 171,051 174,736 178,410	114,767 118,625 122,471 126,306 130,130 133,941 137,741 141,530 145,307 149,072 152,826 156,568 160,298 164,017 167,724 171,420 175,104 178,777	115,153 119,010 122,855 126,689 130,511 134,322 138,121 141,908 145,684 149,448 153,200 156,941 160,671 164,388 168,095 171,789 175,472 179,143	115,539 119,395 123,239 127,072 130,893 134,702 138,500 142,286 146,061 149,824 153,575 167,315 164,760 168,465 172,158 175,840 179,510
30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180 190 200 210	111,672 115,539 119,395 123,239 127,072 130,893 134,702 138,500 142,286 146,061 149,824 153,575 157,315 161,043 164,760 168,465 172,158	112,059 115,925 119,780 123,623 127,454 131,274 135,083 138,879 142,664 146,438 150,199 153,950 157,688 161,415 165,131 168,834 172,527 176,207	112,446 116,311 120,165 124,007 127,837 131,656 135,463 139,258 143,042 146,814 150,575 154,324 158,061 161,787 165,501 169,204 172,895	112,833 116,697 124,390 124,390 128,219 132,037 135,843 139,637 143,420 147,191 150,950 154,698 158,435 162,159 165,872 169,574 173,264 176,942	113,220 117,083 120,934 124,774 128,602 132,418 136,223 140,016 143,797 147,567 151,326 155,072 158,808 162,531 166,243 169,943 173,632 177,309	113,607 117,469 121,319 125,157 128,984 132,799 136,603 140,395 144,175 147,944 151,701 155,446 159,180 162,903 166,613 170,313 174,000 177,676	113,994 117,854 121,703 125,540 129,366 133,180 136,982 140,773 144,552 148,320 152,076 155,820 159,553 163,274 166,984 170,682 174,368 178,043	114,380 118,240 122,087 125,923 129,748 133,561 137,362 141,152 144,930 148,696 152,451 156,194 159,926 163,646 167,354 171,051 174,736 178,410	114,767 118,625 122,471 126,306 130,130 133,941 137,741 141,530 145,307 149,072 152,826 156,568 160,298 164,017 167,724 171,420 175,104 178,777	115,153 119,010 122,855 126,689 130,511 134,322 138,121 141,908 145,684 149,448 153,200 156,941 160,671 164,388 168,095 171,789 175,472 179,143	115,539 119,395 123,239 127,072 130,893 134,702 138,500 142,286 146,061 149,824 153,575 167,315 164,760 168,465 172,158 175,840 179,510
30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180 190 200 210 220	111,672 115,539 119,395 123,239 127,072 130,893 134,702 138,500 142,286 146,061 149,824 153,575 157,315 161,043 164,760 168,465 172,158 175,840 179,510 183,168	112,059 115,925 119,780 123,623 127,454 131,274 135,083 138,879 142,664 146,438 150,199 153,950 157,688 161,415 165,131 168,834 172,527 176,207 179,876 183,533	112,446 116,311 120,165 124,007 127,837 131,656 135,463 139,258 143,042 146,814 150,575 154,324 158,061 161,787 165,501 169,204 172,895 176,575 180,242 183,899	112,833 116,697 120,550 124,390 128,219 132,037 135,843 139,637 143,420 147,191 150,950 154,698 158,435 162,159 165,872 169,574 173,264 176,942 180,609 184,264	113,220 117,083 120,934 124,774 128,602 132,418 136,223 140,016 143,797 147,567 151,326 155,072 158,808 162,531 166,243 169,943 173,632 177,309 180,975 184,628	113,607 117,469 121,319 125,157 128,984 132,799 136,603 140,395 144,175 147,944 151,701 155,446 159,180 162,903 166,613 170,313 174,000 177,676 181,340 184,993	113,994 117,854 121,703 125,540 129,366 133,180 136,982 140,773 144,552 148,320 152,076 155,820 159,553 163,274 166,984 170,682 174,368 178,043 181,706 185,358	114,380 118,240 122,087 125,923 129,748 133,561 137,362 141,152 144,930 148,696 152,451 156,194 159,926 163,646 167,354 171,051 174,736 178,410 182,072 185,722	114,767 118,625 122,471 126,306 130,130 133,941 137,741 141,530 145,307 149,072 152,826 160,298 164,017 167,724 171,420 175,104 178,777 182,437 186,087	115,153 119,010 122,855 126,689 130,511 134,322 138,121 141,908 145,684 149,448 153,200 156,941 160,671 164,388 168,095 171,789 175,472 179,143 182,803 186,451	115,539 119,395 123,239 127,072 130,893 134,702 138,500 142,286 146,061 149,824 153,575 157,315 161,043 164,760 168,465 172,158 175,840 179,510 183,168 186,815
30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180 190 200 210 220 230	111,672 115,539 119,395 123,239 127,072 130,893 134,702 138,500 142,286 146,061 149,824 153,575 157,315 161,043 164,760 168,465 172,158 175,840 179,510 183,168	112,059 115,925 119,780 123,623 127,454 131,274 135,083 138,879 142,664 146,438 150,199 153,950 157,688 161,415 165,131 168,834 172,527 176,207 179,876 183,533	112,446 116,311 120,165 124,007 127,837 131,656 135,463 139,258 143,042 146,814 150,575 154,324 158,061 161,787 165,501 169,204 172,895 176,575 180,242	112,833 116,697 120,550 124,390 128,219 132,037 135,843 139,637 143,420 147,191 150,950 154,698 158,435 162,159 165,872 169,574 173,264 176,942 180,609 184,264	113,220 117,083 120,934 124,774 128,602 132,418 136,223 140,016 143,797 147,567 151,326 155,072 158,808 162,531 166,243 169,943 173,632 177,309 180,975 184,628	113,607 117,469 121,319 125,157 128,984 132,799 136,603 140,395 144,175 147,944 151,701 155,446 159,180 162,903 166,613 170,313 174,000 177,676 181,340 184,993	113,994 117,854 121,703 125,540 129,366 133,180 136,982 140,773 144,552 148,320 152,076 155,820 159,553 163,274 166,984 170,682 174,368 178,043 181,706 185,358	114,380 118,240 122,087 125,923 129,748 133,561 137,362 141,152 144,930 148,696 152,451 156,194 159,926 163,646 167,354 171,051 174,736 178,410 182,072	114,767 118,625 122,471 126,306 130,130 133,941 137,741 141,530 145,307 149,072 152,826 160,298 164,017 167,724 171,420 175,104 178,777 182,437 186,087	115,153 119,010 122,855 126,689 130,511 134,322 138,121 141,908 145,684 149,448 153,200 156,941 160,671 164,388 168,095 171,789 175,472 179,143 182,803 186,451	115,539 119,395 123,239 127,072 130,893 134,702 138,500 142,286 146,061 149,824 153,575 157,315 161,043 164,760 168,465 172,158 175,840 179,510 183,168 186,815
30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180 190 200 210 220 230 240	111,672 115,539 119,395 123,239 127,072 130,893 134,702 138,500 142,286 146,061 149,824 153,575 157,315 161,043 164,760 168,465 172,158 175,840 179,510 183,168 186,815 190,451	112,059 115,925 119,780 123,623 127,454 131,274 135,083 138,879 142,664 146,438 150,199 153,950 157,688 161,415 165,131 168,834 172,527 176,207 179,876 183,533 187,179 190,813	112,446 116,311 120,165 124,007 127,837 131,656 135,463 139,258 143,042 146,814 150,575 154,324 158,061 161,787 165,501 169,204 172,895 176,575 180,242 183,899 187,543 191,176	112,833 116,697 120,550 124,390 128,219 132,037 135,843 139,637 143,420 147,191 150,950 154,698 158,435 162,159 165,872 169,574 173,264 176,942 180,609 184,264 187,907 191,539	113,220 117,083 120,934 124,774 128,602 132,418 136,223 140,016 143,797 147,567 151,326 155,072 158,808 162,531 166,243 169,943 173,632 177,309 180,975 184,628 188,271 191,901	113,607 117,469 121,319 125,157 128,984 132,799 136,603 140,395 144,175 147,944 151,701 155,446 159,180 162,903 166,613 170,313 174,000 177,676 181,340 184,993 188,634 192,264	113,994 117,854 121,703 125,540 129,366 133,180 136,982 140,773 144,552 148,320 152,076 155,820 159,553 163,274 166,984 170,682 174,368 174,368 178,043 181,706 185,358 188,998 192,626	114,380 118,240 122,087 125,923 129,748 133,561 137,362 141,152 144,930 148,696 152,451 156,194 159,926 163,646 167,354 171,051 174,736 174,736 178,410 182,072 185,722 189,361 192,988	114,767 118,625 122,471 126,306 130,130 133,941 137,741 141,530 145,307 149,072 152,826 160,298 164,017 167,724 171,420 175,104 178,777 182,437 189,724 193,350	115,153 119,010 122,855 126,689 130,511 134,322 138,121 141,908 145,684 149,448 153,200 156,941 160,671 164,388 168,095 171,789 175,472 179,143 182,803 186,451 190,088 193,712	115,539 119,395 123,239 127,072 130,893 134,702 138,500 142,286 146,061 149,824 153,575 157,315 161,043 164,760 168,465 172,158 175,840 179,510 183,168 186,815 190,451 194,074
30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180 200 210 220 230 240 250	111,672 115,539 119,395 123,239 127,072 130,893 134,702 138,500 142,286 146,061 149,824 153,575 157,315 161,043 164,760 168,465 172,158 175,840 179,510 183,168 186,815 190,451	112,059 115,925 119,780 123,623 127,454 131,274 135,083 138,879 142,664 146,438 150,199 153,950 157,688 161,415 165,131 168,834 172,527 176,207 179,876 183,533 187,179 190,813 194,436	112,446 116,311 120,165 124,007 127,837 131,656 135,463 139,258 143,042 146,814 150,575 154,324 158,061 161,787 165,501 169,204 172,895 176,575 180,242 183,899 187,543 191,176 194,798	112,833 116,697 120,550 124,390 128,219 132,037 135,843 139,637 143,420 147,191 150,950 154,698 158,435 162,159 165,872 169,574 173,264 176,942 180,609 184,264 187,907 191,539 195,159	113,220 117,083 120,934 124,774 128,602 132,418 136,223 140,016 143,797 147,567 151,326 155,072 158,808 162,531 166,243 169,943 173,632 177,309 180,975 184,628 188,271 191,901 195,520	113,607 117,469 121,319 125,157 128,984 132,799 136,603 140,395 144,175 147,944 151,701 155,446 159,180 162,903 166,613 170,313 174,000 177,676 181,340 184,993 188,634 192,264 195,882	113,994 117,854 121,703 125,540 129,366 133,180 136,982 140,773 144,552 148,320 152,076 155,820 159,553 163,274 166,984 170,682 174,368 174,368 174,368 181,706 185,358 188,998 192,626 196,243	114,380 118,240 122,087 125,923 129,748 133,561 137,362 141,152 144,930 148,696 152,451 156,194 159,926 163,646 167,354 171,051 174,736 178,410 182,072 189,361 192,988 196,604	114,767 118,625 122,471 126,306 130,130 133,941 137,741 141,530 145,307 149,072 152,826 160,298 164,017 167,724 171,420 175,104 178,777 182,437 189,724 193,350 196,965	115,153 119,010 122,855 126,689 130,511 134,322 138,121 141,908 145,684 149,448 153,200 156,941 160,671 164,388 168,095 171,789 175,472 179,143 182,803 186,451 190,088 193,712 197,326	115,539 119,395 123,239 127,072 130,893 134,702 138,500 142,286 146,061 149,824 153,575 157,315 161,043 164,760 168,465 172,158 175,840 179,510 183,168 186,815 190,451 194,074 197,686
30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180 190 200 210 220 230 240	111,672 115,539 119,395 123,239 127,072 130,893 134,702 138,500 142,286 146,061 149,824 153,575 157,315 161,043 164,760 168,465 172,158 175,840 179,510 183,168 186,815 190,451	112,059 115,925 119,780 123,623 127,454 131,274 135,083 138,879 142,664 146,438 150,199 153,950 157,688 161,415 165,131 168,834 172,527 176,207 179,876 183,533 187,179 190,813	112,446 116,311 120,165 124,007 127,837 131,656 135,463 139,258 143,042 146,814 150,575 154,324 158,061 161,787 165,501 169,204 172,895 176,575 180,242 183,899 187,543 191,176 194,798	112,833 116,697 120,550 124,390 128,219 132,037 135,843 139,637 143,420 147,191 150,950 154,698 158,435 162,159 165,872 169,574 173,264 176,942 180,609 184,264 187,907 191,539	113,220 117,083 120,934 124,774 128,602 132,418 136,223 140,016 143,797 147,567 151,326 155,072 158,808 162,531 166,243 169,943 173,632 177,309 180,975 184,628 188,271 191,901 195,520	113,607 117,469 121,319 125,157 128,984 132,799 136,603 140,395 144,175 147,944 151,701 155,446 159,180 162,903 166,613 170,313 174,000 177,676 181,340 184,993 188,634 192,264 195,882	113,994 117,854 121,703 125,540 129,366 133,180 136,982 140,773 144,552 155,820 155,820 159,553 163,274 166,984 170,682 174,368 178,043 181,706 185,358 188,998 192,626 196,243 199,848	114,380 118,240 122,087 125,923 129,748 133,561 137,362 141,152 144,930 148,696 152,451 156,194 159,926 163,646 167,354 171,051 174,736 178,410 182,072 185,722 185,722 189,361 192,988 196,604 200,208	114,767 118,625 122,471 126,306 130,130 133,941 137,741 141,530 145,307 152,826 156,568 160,298 164,017 167,724 171,420 175,104 178,777 182,437 189,724 193,350 196,965 200,568	115,153 119,010 122,855 126,689 130,511 134,322 138,121 141,908 145,684 149,448 153,200 156,941 160,671 164,388 168,095 171,789 175,472 179,143 182,803 186,451 190,088 193,712 197,326 200,927	115,539 119,395 123,239 127,072 130,893 134,702 138,500 142,286 146,061 149,824 153,575 157,315 161,043 164,760 168,465 172,158 175,840 179,510 183,168 186,815 190,451 194,074 197,686 201,287
30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180 190 200 210 220 230 240 250 260 270	111,672 115,539 119,395 123,239 127,072 130,893 134,702 138,500 142,286 146,061 149,824 153,575 157,315 161,043 164,760 168,465 172,158 175,840 179,510 183,168 186,815 190,451	112,059 115,925 119,780 123,623 127,454 131,274 135,083 138,879 142,664 146,438 150,199 153,950 157,688 161,415 165,131 168,834 172,527 176,207 179,876 183,533 187,179 190,813 194,436 198,047	112,446 116,311 120,165 124,007 127,837 131,656 135,463 139,258 143,042 146,814 150,575 154,324 158,061 161,787 165,501 169,204 172,895 176,575 180,242 183,899 187,543 191,176 194,798 198,407	112,833 116,697 120,550 124,390 128,219 132,037 135,843 139,637 143,420 147,191 150,950 154,698 158,435 162,159 165,872 169,574 173,264 176,942 180,609 184,264 187,907 191,539 195,159	113,220 117,083 120,934 124,774 128,602 132,418 136,223 140,016 143,797 147,567 151,326 155,072 158,808 162,531 166,243 173,632 177,309 180,975 184,628 188,271 191,901 195,520 199,128	113,607 117,469 121,319 125,157 128,984 132,799 136,603 140,395 144,175 147,944 151,701 155,446 159,180 162,903 166,613 170,313 174,000 177,676 181,340 184,993 188,634 192,264 195,882	113,994 117,854 121,703 125,540 129,366 133,180 136,982 140,773 144,552 148,320 159,553 163,274 166,984 170,682 174,368 178,043 181,706 185,358 188,998 192,626 196,243 199,848	114,380 118,240 122,087 125,923 129,748 133,561 137,362 141,152 144,930 148,696 152,451 156,194 159,926 163,646 167,354 171,051 174,736 178,410 182,072 185,722 185,722 189,361 192,988 196,604 200,208	114,767 118,625 122,471 126,306 130,130 133,941 137,741 141,530 145,307 149,072 152,826 160,298 164,017 167,724 171,420 175,104 178,777 182,437 189,724 193,350 196,965	115,153 119,010 122,855 126,689 130,511 134,322 138,121 141,908 145,684 149,448 153,200 156,941 160,671 164,388 168,095 171,789 175,472 179,143 182,803 186,451 190,088 193,712 197,326 200,927	115,539 119,395 123,239 127,072 130,893 134,702 138,500 142,286 146,061 149,824 153,575 157,315 161,043 164,760 168,465 172,158 175,840 179,510 183,168 186,815 190,451 194,074 197,686 201,287
30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180 190 220 220 230 240 250 260	111,672 115,539 119,395 123,239 127,072 130,893 134,702 138,500 142,286 146,061 149,824 153,575 157,315 161,043 164,760 168,465 172,158 175,840 179,510 183,168 186,815 190,451 194,074 197,686 201,287	112,059 115,925 119,780 123,623 127,454 131,274 135,083 138,879 142,664 146,438 150,199 153,950 157,688 161,415 165,131 168,834 172,527 176,207 179,876 183,533 187,179 190,813 194,436 198,047	112,446 116,311 120,165 124,007 127,837 131,656 135,463 139,258 143,042 146,814 150,575 154,324 158,061 161,787 165,501 169,204 172,895 176,575 180,242 183,899 187,543 191,176 194,798 198,407 202,006	112,833 116,697 120,550 124,390 128,219 132,037 135,843 139,637 143,420 147,191 150,950 154,698 158,435 162,159 165,872 169,574 173,264 176,942 180,609 184,264 187,907 191,539 195,159 198,768	113,220 117,083 120,934 124,774 128,602 132,418 136,223 140,016 143,797 147,567 151,326 155,072 158,808 162,531 166,243 173,632 177,309 180,975 184,628 188,271 191,901 195,520 199,128 202,724	113,607 117,469 121,319 125,157 128,984 132,799 136,603 140,395 144,175 155,446 159,180 162,903 166,613 170,313 174,000 177,676 181,340 184,993 188,634 192,264 195,882 199,488 203,083	113,994 117,854 121,703 125,540 129,366 133,180 136,982 140,773 144,552 159,553 163,274 166,984 170,682 174,368 178,043 181,706 185,358 188,998 192,626 196,243 199,848 203,442	114,380 118,240 122,087 125,923 129,748 133,561 137,362 141,152 144,930 148,696 152,451 156,194 159,926 163,646 167,354 171,051 174,736 178,410 182,072 185,722 185,722 189,361 192,988 196,604 200,208 203,800	114,767 118,625 122,471 126,306 130,130 133,941 137,741 141,530 145,307 152,826 156,568 160,298 164,017 167,724 171,420 175,104 178,777 182,437 186,087 189,724 193,350 196,965 200,568 204,159	115,153 119,010 122,855 126,689 130,511 134,322 138,121 141,908 145,684 149,448 153,200 156,941 160,671 164,388 168,095 171,789 175,472 179,143 182,803 186,451 190,088 193,712 197,326 200,927	115,539 119,395 123,239 127,072 130,893 134,702 138,500 142,286 146,061 149,824 153,575 157,315 161,043 164,760 168,465 172,158 175,840 179,510 183,168 186,815 190,451 194,074 197,686 201,287 204,876
30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180 190 220 230 240 250 260 270	111,672 115,539 119,395 123,239 127,072 130,893 134,702 138,500 142,286 146,061 149,824 153,575 157,315 161,043 164,760 168,465 172,158 175,840 179,510 183,168 186,815 190,451 194,074 197,686 201,287 204,876	112,059 115,925 119,780 123,623 127,454 131,274 135,083 138,879 142,664 146,438 150,199 153,950 157,688 161,415 165,131 168,834 172,527 176,207 179,876 183,533 187,179 190,813 194,436 198,047 201,646 205,234 208,810	112,446 116,311 120,165 124,007 127,837 131,656 135,463 139,258 143,042 146,814 150,575 154,324 158,061 161,787 165,501 169,204 172,895 176,575 180,242 183,899 187,543 191,176 194,798 198,407 202,006 205,592	112,833 116,697 120,550 124,390 128,219 132,037 135,843 139,637 143,420 147,191 150,950 154,698 154,698 162,159 165,872 169,574 173,264 176,942 180,609 184,264 187,907 191,539 195,159 198,768 202,365	113,220 117,083 120,934 124,774 128,602 132,418 136,223 140,016 143,797 147,567 151,326 155,072 158,808 162,531 166,243 173,632 177,309 180,975 184,628 188,271 191,901 195,520 199,128 202,724 206,308 209,881	113,607 117,469 121,319 125,157 128,984 132,799 136,603 140,395 144,175 155,446 159,180 162,903 166,613 170,313 174,000 177,676 181,340 184,993 188,634 192,264 199,488 203,083 206,666	113,994 117,854 121,703 125,540 129,366 133,180 136,982 140,773 144,552 148,320 152,076 155,820 159,553 163,274 170,682 174,368 178,043 181,706 185,358 188,998 192,626 196,243 199,848 203,442 207,024 210,594	114,380 118,240 122,087 125,923 129,748 133,561 137,362 141,152 144,930 148,696 152,451 156,194 159,926 163,646 167,354 171,051 174,736 178,410 182,072 185,722 189,361 192,988 196,604 203,800 207,381 210,950	114,767 118,625 122,471 126,306 130,130 133,941 137,741 141,530 145,307 149,072 152,826 156,568 160,298 164,017 167,724 171,420 175,104 178,777 182,437 186,087 189,724 193,350 196,965 200,568 204,159 207,739 211,307	115,153 119,010 122,855 126,689 130,511 134,322 138,121 141,908 145,684 149,448 153,200 156,941 160,671 164,388 168,095 171,789 175,472 179,143 182,803 186,451 190,088 193,712 197,326 200,927 204,517 208,096 211,663	115,539 119,395 123,239 127,072 130,893 134,702 138,500 142,286 146,061 149,824 153,575 157,315 161,043 164,760 168,465 172,158 175,840 179,510 183,168 186,815 190,451 194,074 197,686 201,287 204,876 208,453

TERMORESISTENZA

PT100

Risposta termica termocoppia tipo E(Nichel/Cromo Vs.Rame/Nichel). Temperatura[°C] vs. F.e.m. [mV] secondo IEC 584-1 - ITS-90 giunto di riferimento 0 °C

310	215,573	-	216,282		_	217,346					219,115
320	219,115	219,469	219,822	220,176	220,529	220,882	221,235	221,588	221,941	222,294	222,646
°C	0	1	2	3	4	5	6	7	8	9	10
						_		-			
°C	222.040	222,000	222.251	3 702	224.055	5	6 224 750	7	325.463	9	10
330	222,646	222,999	223,351	223,703		224,407	224,759	225,111	225,463	225,814	226,166
340	226,166	226,517	226,868	227,219	227,570	227,921	228,272	228,622	228,973	229,323	229,673
350		230,023	230,373	230,723			231,772		232,471	232,820	233,169
360	233,169	233,518	233,867	234,216		234,913	235,261	235,610	235,958	236,306	236,654
370 380	236,654	237,002	237,349	237,697	238,044	238,392	238,739	239,086 242,551	239,433 242,897	243,242	240,127
390	243,588	243,933	244,279	244,624	244,969	245,314	245,659	246,004	246,349	246,693	247,038
400	247,038	247,382	247,726	248,070		248,758	249,102	249,445	249,789	250,132	_
410	250,476	250,819	251,162	251,505	251,848	252,190	252,533	252,875	253,218	253,560	253,902
410	250,476	250,819	251,162	251,505	251,848	252,190	252,533	252,875	253,218	253,560	253,902
420	253,902	254,244	254,586	254,928	255,269	255,611	255,952	256,294	256,635	256,976	257,317
430	257,317	257,658	257,999	258,339	258,680	259,020		259,700	260,040	260,380	260,720
440	260,720	261,060	261,399	261,739	262,078	262,417	262,757	263,096	263,434	263,773	264,112
450	264,112	264,450	264,789	265,127	265,465	265,803	266,141	266,479	266,817	267,154	267,492
460	267,492	267,829	268,167	268,504	268,841	269,178	269,514	269,851	270,188	270,524	270,860
470	270,860	271,197	271,533	271,869	272,204	272,540	272,876	273,211	273,547	273,882	274,217
480	274,217	274,552	274,887	275,222	275,557	275,891	276,226	276,560	276,894	277,228	277,562
490	277,562	277,896	278,230	278,564	278,897	279,231	279,564	279,897	280,230	280,563	280,896
500	280,896	281,229	281,561	281,894	282,226	282,558	282,891	283,223	283,555	283,886	284,218
510	284,218	284,550	284,881	285,212	285,544	285,875	286,206	286,537	286,867	287,198	287,528
520	287,528	287,859	288,189	288,519	288,849	289,179	289,509	289,839	290,168	290,498	290,827
530	290,827	291,156	291,486	291,815	292,144	292,472	292,801	293,130	293,458	293,786	294,114
540	294,114	294,443	294,770	295,098	295,426	295,754	296,081	296,409	296,736	297,063	297,390
550	297,390	297,717	298,044	298,370	298,697	299,023	299,350	299,676	300,002	300,328	300,654
560	300,654	300,980	301,305	301,631	301,956	302,282	302,607	302,932	303,257	303,582	303,906
570	303,906	304,231	304,556	304,880	305,204	305,528	305,852	306,176	306,500	306,824	307,147
580	307,147	307,471	307,794	308,117	308,440	308,763	309,086	309,409	309,732	310,054	310,376
590	310,376	310,699	311,021	311,343	311,665	311,987	312,308	312,630	312,951	313,273	313,594
600	313,594	313,915	314,236	314,557	314,878	315,198	315,519	315,839	316,160	316,480	316,800
610	316,800	317,120	317,440	317,760	318,079	318,399	318,718	319,037	319,356	319,675	319,994
620	319,994	320,313	320,632	320,950	321,269	321,587	321,905	322,224	322,541	322,859	323,177
630	323,177	323,495	323,812	324,130	324,447	324,764	325,081	325,398	325,715	326,032	326,348
640	326,348	326,665	326,981	327,297	327,614	327,930	328,245	328,561	328,877	329,192	329,508
650	329,508	329,823	330,138	330,453	330,768	331,083	331,398	331,713	332,027	332,342	332,656
660		_					_				335,792
670	335,792	336,105	336,418	336,731	337,043	337,356	337,668	337,981	338,293	338,605	338,917
680							_	_			342,030
690	342,030	342,341	342,651	342,962	343,272	343,582	343,892	344,202	344,512	344,822	345,132
700	345,132	345,441	345,751	346,060	346,369	346,678	346,987	347,296	347,604	347,913	348,222
710	348,222	348,530	348,838	349,146	349,454	349,762	350,070	350,378	350,685	350,993	351,300
720											354,367
730	354,367						356,201				
740	357,422						359,249				
750							362,286				_
760	363,497		364,102								366,517
770	366,517						368,324				369,526
780	369,526						371,326				
790	372,523										375,509
800	375,509	375,807	376,105	376,402	376,700	376,997	377,295	377,592	377,889	378,186	378,483